Distribution System Optimization by Circular Reconfiguration Technique

  • Smrutirekha Mohapatra
  • Satwik BeheraEmail author
  • Subrat Kumar Dash
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 665)


This article presents a new fuzzy-based circular reconfiguration methodology for solving the reconfiguration problem of a radial distribution system. Multiple objectives are considered such as real power loss minimization, node voltage deviation minimization and branch current loading minimization while subjected to constraints of maintaining radial structure, all load energization and validation of KCL and KVL laws in the network. Further fuzzy membership functions are defined to normalize multiple objectives as well as to combine them to make a single objective. Present technique is applied to IEEE 69 radial distribution system under two loading conditions (constant power load, composite load), and the results are encouraging.


Circular reconfiguration Power distribution system Fuzzy multi-objective approach 


  1. 1.
    Merlin, A., Back, H.: Search for a minimum loss optimal spanning tree configuration for an urban power distribution system. In: 5th International Proceedings on Power System Computation Conference, Cambridge, U.K., pp. 1 2/6 (1975)Google Scholar
  2. 2.
    Shirmohammadi, D., Hong, H.W., Semlyen, A., Luo, G.X.: A compensation based power flow method for weakly meshed distribution and transmission network. IEEE Trans. Power Syst. 3, 753–762 (1988)CrossRefGoogle Scholar
  3. 3.
    Civanlar, S., Grainger, J.J., Yin, H., Lee, S.S.H.: Distribution feeder reconfiguration for loss reduction. IEEE Trans. Power Deliv. 3, 1217–1223 (1988)CrossRefGoogle Scholar
  4. 4.
    Baran, M.E., Wu, F.: Network reconfiguration in distribution system for loss reduction and load balancing. IEEE Trans. Power Deliv. 4, 1401–1407 (1989)CrossRefGoogle Scholar
  5. 5.
    Taylor, T., Lubkeman, D.: Implementation of heuristic search strategies for distribution feeder reconfiguration. IEEE Trans. Power Deliv. 5, 239–246 (1990)CrossRefGoogle Scholar
  6. 6.
    Goswami, S.K., Basu, S.K.: A new algorithm for the reconfiguration of distribution feeders for loss minimization. IEEE Trans. Power Deliv. 7, 1484–1491 (1992)CrossRefGoogle Scholar
  7. 7.
    Kashem, M.A., Ganapathy, V., Jasmon, G.B.: Network reconfiguration for enhancement of voltage stability in distribution networks. IEEE Proc.-Gener. Transm. Distrib. 147, 171–175 (2000)Google Scholar
  8. 8.
    Kashem, M.A., Ganapathy, V., Jasmon, G.B.: A geometrical approach for network reconfiguration based loss minimization in distribution systems. Electr. Power Energy Syst. 23, 295–304 (2001)Google Scholar
  9. 9.
    Venkatesh, B., Ranjan, R.: Optimal radial distribution system reconfiguration using Fuzzy adaptation of evolutionary programming. Electr. Power Energy Syst. 25, 775–780 (2003)Google Scholar
  10. 10.
    Venkatesh, B., Ranjan, R., Gooi, H.B.: Optimal reconfiguration of radial distribution systems to maximize loadability. IEEE Trans. Power Syst. 19 (2004)Google Scholar
  11. 11.
    Das, D.: A fuzzy multi-objective approach for network reconfiguration of distribution systems. IEEE Trans. Power Deliv. 21, 202–209 (2006)Google Scholar
  12. 12.
    Das, D.: Reconfiguration of distribution system using Fuzzy multi-objective approach. Electr. Power Energy Syst. 28, 331–338 (2006)CrossRefGoogle Scholar
  13. 13.
    Lin, C.-H.: Distribution network reconfiguration for load Balancing with a coloured Petri net algorithm. IEEE Proc. Gener. Transm. Distrib. 150 (2003)Google Scholar
  14. 14.
    Prasad, K., Sahoo, N.C.: A Simplified Approach for Computer-Aided Education of Network reconfiguration in Radial Distribution Systems. Wiley Periodicals Inc. (2007)Google Scholar
  15. 15.
    Ahuja, A., Das, S., Pahwa, A.: An AIS-ACO hybrid approach for multi-objective distribution system reconfiguration. IEEE Trans. Power Syst. 22 (2007)Google Scholar
  16. 16.
    Zhang, D., Zhengcai, F., Zhang, L.: An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems. Electr. Power Syst. Res. 77, 685–694 (2007)CrossRefGoogle Scholar
  17. 17.
    Su, C.-T., Lee, C.-S.: Network reconfiguration of distribution systems using improved mixed-integer hybrid differential evolution. IEEE Trans. Power Deliv. 18 (2003)Google Scholar
  18. 18.
    Gupta, N., Swarnkar, A., Niazi, K.R., Bansal, R.C.: Multi-objective reconfiguration of distribution Systems using adaptive genetic algorithm in fuzzy framework. IET Gener. Transm. Distrib. 4(12), 1288–1298 (2010)CrossRefGoogle Scholar
  19. 19.
    Zhu, J.Z.: Optimal reconfiguration of electrical distribution network using the Refined genetic algorithm. Electr. Power Syst. Res. 62, 37–42 (2002)CrossRefGoogle Scholar
  20. 20.
    Mendoza, J., López, R., Morales, D., López, E., Dessante, P., Moraga, R.: Minimal loss reconfiguration using genetic algorithms with restricted population and addressed operators: real application. IEEE Trans. Power Syst. 21 (2006)Google Scholar
  21. 21.
    Edgar Manuel Carreno, Rubén Romero, Antonio Padilha-Feltrin, “An Efficient Codification to Solve Distribution Network Reconfiguration for Loss Reduction Problem” IEEE transactions on power systems, vol. 23, November (2008)Google Scholar
  22. 22.
    Enacheanu, B., Raison, B., Caire, R., Devaux, O., Bienia, W., Hadjsaid, N.: Radial network reconfiguration using genetic algorithm based on the Matroid theory. IEEE Trans. Power Syst. 23 (2008)Google Scholar
  23. 23.
    Nikam, T.: An efficient multi-objective HBMO algorithm for distribution feeder reconfiguration. Expert Syst. Appl. 38, 2878–2887 (2011)CrossRefGoogle Scholar
  24. 24.
    Narimani, M.R., Vahed, A.A., Azizipanah-Abarghooee, R., Javidsharifi, M.: Enhanced gravitational search algorithm for Multi-objective distribution feeder reconfiguration considering reliability, loss and operational cost. IET Gener. Transm. Distrib. 8(1), 55–69 (2004)CrossRefGoogle Scholar
  25. 25.
    Sudha Rani, D., Subrahmanyam, N., Sydulu, M.: Self adaptive harmony search algorithm for optimal network reconfiguration. IEEE Trans. Power Deliv. (2014)Google Scholar
  26. 26.
    Viswanadha Raju, G.K., Bijwe, P.R.: Efficient reconfiguration of balanced and unbalanced Distribution systems for loss minimisation. IET Gener. Transm. Distrib. 2(1), 7–12 (2008)CrossRefGoogle Scholar
  27. 27.
    Su, C.-T., Chang, C.-F., Chiou, J.-P.: Distribution network reconfiguration for loss reduction by ant colony search algorithm. Electr. Power Syst. Res. 75, 190–199 (2005)CrossRefGoogle Scholar
  28. 28.
    Carpaneto, E., Chicco, G.: Distribution system minimum loss reconfiguration in the Hyper-Cube Ant Colony Optimization Framework. Electr. Power Syst. Res. 78, 2037–2045 (2008)CrossRefGoogle Scholar
  29. 29.
    Srinivasa Rao, R., Ravindra, K., Satish, K., Narasimham, S.V.L.: Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE Trans. Power Syst. 28 (2013)Google Scholar
  30. 30.
    Farahani, V., Vahidi, B., Askarian Abyaneh, H.: Reconfiguration and capacitor placement simultaneously for energy loss reduction based on an improved reconfiguration method. IEEE Trans. Power Syst. 27 (2012)Google Scholar
  31. 31.
    Ghosh, S., Das, D.: Method for load-flow solution of radial distribution networks. IEEE Proc. Gener. Transm. Distrib. 146, 641–648 (1999)CrossRefGoogle Scholar
  32. 32.
    Chakrovorty, M., Das, D.: Voltage stability analysis of radial distribution networks. Electr. Power Energy Syst. 23, 129–135 (2003)CrossRefGoogle Scholar
  33. 33.
    Savier, J.S., Das, D.: Impact of network reconfiguration on loss allocation of radial distribution systems. IEEE Trans. Power Deliv. 2, 2473–2480 (2007)CrossRefGoogle Scholar
  34. 34.
    Tandon, A., Saxena, D.: A comparative analysis of SPSO and BPSO for power loss minimization in distribution system using network reconfiguration. In: International Conference on Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH14), 28 & 29 Nov 2014Google Scholar
  35. 35.
    Chena, J., Zhang, F., Zhang, Y.: Distribution network reconfiguration based on simulated annealing immune algorithm. Energy Procedia 12, 271–277 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Smrutirekha Mohapatra
    • 2
  • Satwik Behera
    • 1
    Email author
  • Subrat Kumar Dash
    • 1
  1. 1.Goverment College of Engineering KalahandiBhawanipatnaIndia
  2. 2.Institute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations