Output Voltage Regulated CUK and SEPIC Converter with High Input Power Factor

  • Alok Kumar MishraEmail author
  • Akshaya Kumar Patra
  • Ramachandra Agrawal
  • Nabajyoti Swain
  • Debadutta Dash
  • Shahil Sharma
  • Pranav Mohapatra
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 665)


This paper presents a comparative analysis between the two converter topologies namely SEPIC and CUK converter used for power factor correction. MATLAB/SIMULINK models of SEPIC and CUK converter are developed to improve the input power factor and output voltage regulation. Two different control techniques, namely (Average current control technique and Hysteresis current control technique) are used for input power factor correction and to get a regulated voltage at the output PI or fuzzy logic controller (FLC) is adopted. The system is tested at both steady-state, transient condition and its performance is then estimated and compared in terms of various parameters like Total Harmonic Distortion (THD), input power factor, output voltage ripple for PI and FLC in both Average and Hysteresis current control method.


PID FLC SEPIC converter CUK converter Average current control Power factor correction circuits 


  1. 1.
    Mishra, A.K., Pathak, M.K., Das, S.: Isolated converter topologies for power factor correction—a comparison. In: IEEE International Conference on Energy, Automation and Signal, pp. 1–6, 28 Dec 2011Google Scholar
  2. 2.
    Kuiyuan, W.: The comparison and choice of several power factor correction methods. IEEE Vehicle Power and Propulsion Conference, pp. 1–5. IEEE (2006, September)Google Scholar
  3. 3.
    519–2014: IEEE recommended practice and requirements for harmonic control in electric power systems, pp. 1–29, 11 June 2014Google Scholar
  4. 4.
    Pressman, I.: Switching Power Supply Design. McGraw-Hill, New York (1991)Google Scholar
  5. 5.
    Patra, A.K., Rout, P.K.: Adaptive continuous-time model predictive controller for implantable insulin delivery system in Type I diabetic patient. Optimal. Control Appl. Methods 38, 184–204 (2017)zbMATHCrossRefGoogle Scholar
  6. 6.
    Patra, A.K., et al.: Optimal H-infinity insulin injection control for blood glucose regulation in IDDM patient using physiological model. Int. J. Autom. Control 8, 309–322 (2014)CrossRefGoogle Scholar
  7. 7.
    Singh, B., et al.: A review of single-phase improved power quality AC-DC converters. IEEE Trans. Ind. Electron. 50(5), 962–981 (2003)CrossRefGoogle Scholar
  8. 8.
    Batarseh, I.: Power Electronics Circuits, 3rd ed. WileyGoogle Scholar
  9. 9.
    Richard, R.: The fundamentals of power factor correction. Int. J. Elect. Eng. Educ. 31, 213–229 (1994)CrossRefGoogle Scholar
  10. 10.
    Dah, D., et al.: Light-load efficiency improvement in buck-derived single-stage single-switch PFC converters”. IEEE Trans. Power Electron. 28(5), 2105–2110 (2013)CrossRefGoogle Scholar
  11. 11.
    Patra, A.K., Mishra, A.K., Rout, P.K.: Backstepping model predictive controller for blood glucose regulation in Type-I Diabetes Patient. IETE J. Res.
  12. 12.
    Patra, A.K., Rout, P.K.: Adaptive sliding mode Gaussian controller for artificial pancreas in TIDM patient. J. Process Control 58, 23–27 (2017)CrossRefGoogle Scholar
  13. 13.
    Liu, X., Xu, J., Chen, Z., et al.: Single-inductor dual-output buck–boost power factor correction converter. IEEE Trans. Ind. Electron. 62(2), 943–952 (2015)CrossRefGoogle Scholar
  14. 14.
    Kanaan, H.Y., Al-Haddad, K., Fnaiech, F.: Switching-function-based modeling and control of a SEPIC power factor correction circuit operating in continuous and discontinuous current modes. In: IEEE International Conference on Industrial Technology, vol. 1, No. 8, pp. 431–437 (2004, December)Google Scholar
  15. 15.
    Umamaheswari, M.G., Uma, G.: Analysis and design of reduced order linear quadratic regulator control for three phase power factor correction using Cuk rectifiers. Electr, Power Syst. Res. 1(96), 1–8 (2013)CrossRefGoogle Scholar
  16. 16.
    Umamaheswari, M.G., et al.: Comparison of hysteresis control and reduced order linear quadratic regulator control for power factor correction using DC–DC Cuk converters. J. Circ. Syst. Comput. 21(1), 1250002 (2012)CrossRefGoogle Scholar
  17. 17.
    Umamaheswari, M.G., et al.: Analysis and design of digital predictive controller for PFC Cuk converter. J. Comput. Electron. 13(1), 142–154 (2014)CrossRefGoogle Scholar
  18. 18.
    Poorali, B., Adib, E.: Analysis of the integrated SEPIC-flyback converter as a single-stage single-switch power-factor-correction LED driver. IEEE Trans. Ind. Electron. 63(6), 3562–3569 (2016)CrossRefGoogle Scholar
  19. 19.
    Melo, P.F., Gules, R., Ribeiro, E.F., et al.: A modified SEPIC converter for high-power-factor rectifier and universal input voltage applications. IEEE Trans. Power Electron 25(2), 310–321 (2010)CrossRefGoogle Scholar
  20. 20.
    Sudhakarababu, C., Veerachary, M.: Zeta converter for power factor correction and voltage regulation. In: 2004 IEEE Region 10 Conference TENCON 2004, vol. 500, pp. 61–64. 24 Nov 2004. IEEEGoogle Scholar
  21. 21.
    Patra, A.K., Rout, P.K.: Backstepping sliding mode Gaussian insulin injection control for blood glucose regulation in TIDM patient. J. Dyn. Sys., Meas., Control. 140(9), 091006–091006-15 (2018)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Alok Kumar Mishra
    • 1
    Email author
  • Akshaya Kumar Patra
    • 1
  • Ramachandra Agrawal
    • 2
  • Nabajyoti Swain
    • 1
  • Debadutta Dash
    • 1
  • Shahil Sharma
    • 1
  • Pranav Mohapatra
    • 1
  1. 1.Department of Electrical and Electronics EngineeringInstitute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia
  2. 2.Department of EEInstitute of Technical Education and Research, Siksha ‘O’ Anusandhan (Deemed to be University)BhubaneswarIndia

Personalised recommendations