Hybrid Sliding Mode Based Simplified NFC for Fuel Cell-Powered Linearized IM Drive

  • Rabi Narayan MishraEmail author
  • Kanungo Barada Mohanty
  • Abhimanyu Sahu
  • Partha Sarathi Behera
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 665)


This paper discusses the design of a fuel cell system operated hybrid sliding mode based simplified neuro-fuzzy control (NFC) for feedback linearized induction motor (IM) drive. The proposed sliding mode simplified NFC (SMSNFC) with intuitive feedback linearization (FBL) extensively reduces torque ripple and gives optimal performance. This proposed technique has also the high computational efficiency over conventional SMNFC and thus can easily be applied for industrial applications. A fuel cell followed by a boost regulator is treated as an external source during power failure and maintain the supply to IM drive to improve the efficiency of the system. Extensive simulation results with its analysis are investigated and it is observed that the system is robust and gives an enhanced performance.


Feedback linearization (FBL) Fuel cell Induction motor (IM) Sliding mode simplified neuro-fuzzy control (SMSNFC) 


  1. 1.
    Jia-Min, S., Hurng-Liahng, J., Jinn-Chang, W., Kuen-Der, W.: Single-phase three-wire grid-connected power converter with energy storage for positive grounding photovoltaic generation system. Electr Power Energy Syst. 54, 134–143 (2014)CrossRefGoogle Scholar
  2. 2.
    Li, Q., Chen, W., Liu, S., You, Z., Tao, S.: Power management strategy based on adaptive neuro-fuzzy inference system for fuel cell-battery hybrid vehicle. J. Renew Sustain Energy 4, 013106 (2012)CrossRefGoogle Scholar
  3. 3.
    Lekhchine, S., Bahi, T., Abadlia, I., Bouzeria, H.: PV-battery energy storage system operating of asynchronous motor driven by using fuzzy sliding mode control. Int. J. Hydrogen Energy (2016). Scholar
  4. 4.
    Bose, B.K.: Modern Power Electronics and AC Drives. New Delhi, Prentice Hall Of India (2008)Google Scholar
  5. 5.
    Chiasson, J.: A new approach to dynamic feedback linearization control of an induction motor. IEEE Trans. Automatic Control. 43(3), 391–397 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Alonge, F., Cirrincione, M., Pucci, M., Sferlazza, A.: Input–output feedback linearization control with on-line MRAS-based inductor resistance estimation of linear induction motors including the dynamic end effects. IEEE Trans. Ind. Appl. 52, 254–266 (2016)CrossRefGoogle Scholar
  7. 7.
    Zhang, Z., Tang, R., Bai, B., Xie, D.: Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors. IEEE Trans. on Magnetics 46(8), 3133–3136 (2010)CrossRefGoogle Scholar
  8. 8.
    Mishra, R.N., Mohanty, K.B.: Implementation of feedback linearization modelled induction motor drive through an adaptive simplified neuro-fuzzy approach. Sadhana (Springer) 42(12), 2113–2135 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lascu, C., Jafarzadeh, S., Fadali, S., Blaabjerg, F.: Direct torque control with feedback linearization for induction motor drives. IEEE Trans. Power Electron. 33(3), 2072–2080 (2017)CrossRefGoogle Scholar
  10. 10.
    Gadoue, S.M., Giaouris, D., Finch, J.W.: MRAS sensorless vector control of an induction motor using new sliding-mode and fuzzy logic adaption mechanisms. IEEE Trans Energy Conversion. 25(2), 394–402 (2010)CrossRefGoogle Scholar
  11. 11.
    Lee, C.C.: Fuzzy Logic in Control Systems: Fuzzy Logic Controller—Part 2, IEEE (1990)Google Scholar
  12. 12.
    Uddin, M.N., Abido, M.A., Rahman, M.A.: Development and implementation of a hybrid intelligent controller for interior permanent magnet synchronous motor drive. IEEE Trans. Ind. Appl. 40(1), 68–76 (2004)CrossRefGoogle Scholar
  13. 13.
    Lin, C.T., Lee, C.S.G.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Englewood Cliffs, NJ, USA, Prentice Hall (1996)Google Scholar
  14. 14.
    Uddin, M.N., Chy, M.I.: A novel fuzzy logic controller based torque and flux controls of IPM synchronous motor. IEEE Trans. Ind. Appl. 46(3), 1220–1229 (2010)CrossRefGoogle Scholar
  15. 15.
    Mishra, R.N., Mohanty, K.B.: Design and implementation of a feedback linearization controlled IM drive via simplified neuro-fuzzy approach. IETE J. Res. 64(2), 209–230 (2017)CrossRefGoogle Scholar
  16. 16.
    Uddin, M.N., Wen, H.: Development of a self-tuned neuro–fuzzy controller for induction motor drives. IEEE Trans. Ind. Appl. 43(4), 1108–1116 (2007)CrossRefGoogle Scholar
  17. 17.
    Uddin, M.N., Huang, Z.R., Hossain, A.B.M.S.: Development and implementation of a simplified self-tuned neuro–fuzzy-based IM drive. IEEE Trans. Ind. Appl. 50(1), 51–59 (2014)CrossRefGoogle Scholar
  18. 18.
    Sher, H.A., Addoweesh, K.E.: Power storage options for hybrid electric vehicles-A survey. J. Renew Sustain Energ 4, 052701 (2012)CrossRefGoogle Scholar
  19. 19.
    Kazimierczuk, M.K.: Pulse-width Modulated DC–DC Power Converters, Chichester. Wiley, UK (2008)CrossRefGoogle Scholar
  20. 20.
    Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice Hall (1991)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rabi Narayan Mishra
    • 1
    Email author
  • Kanungo Barada Mohanty
    • 2
  • Abhimanyu Sahu
    • 2
  • Partha Sarathi Behera
    • 1
  1. 1.Silicon Institute of TechnologyBhubaneswarIndia
  2. 2.National Institute of TechnologyRourkelaIndia

Personalised recommendations