Modified Empirical Mode Decomposition and Teager–Kaiser Energy Operator-Based Phasor Estimation in Presence of DC Offset for Digital Relaying Application

  • Debadatta Amaresh GadanayakEmail author
  • Ranjan Kumar Mallick
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 665)


Conventional discrete Fourier transform algorithm which is commonly used for phasor estimation in digital protective relays exhibits large estimation error and long convergence time in presence of exponentially decreasing DC components. This paper presents an efficient algorithm for phasor estimation using a modified empirical mode decomposition and Teager–Kaiser energy operator. The knot-based empirical mode decomposition efficiently separates the decreasing DC component from the signal and the Teager–Kaiser energy operator estimates the amplitude with minimum delay. The performance is evaluated using an ideal signal with double decreasing dc component generated in MATLAB and fault signals from a 66 kV transmission line model created in Simulink. Simulation results show promising results in terms of estimation accuracy and convergence time as compared to the Fourier transform-based method. Because of low-computational complexity, higher accuracy and satisfactory convergence time, this method is practicable and proficient for fast digital relaying applications.


Phasor estimation Empirical mode decomposition Knot-based empirical mode decomposition Teager–Kaiser energy operator Hilbert transform 


  1. 1.
    Guo, Y., Kezunovic, M., Chen, D.: Simplified algorithms for removal of the effect of exponentially decaying DC-offset on the Fourier algorithm. IEEE Trans. Power Deliv. 18(3), 711–717 (2003)CrossRefGoogle Scholar
  2. 2.
    Benmouyal, G.: Removal of DC-offset in current waveforms using digital mimic filtering. IEEE Trans. Power Deliv. 10(2), 621–630 (1995)CrossRefGoogle Scholar
  3. 3.
    Godse, R., Bhat, S.: Real-time digital filtering algorithm for elimination of the decaying DC component using mathematical morphology. IET Gener. Transm. Distrib. 13(15), 3230–3239 (2018)CrossRefGoogle Scholar
  4. 4.
    Kang, S., Lee, D., Nam, S., Crossley, P.A., Kang, Y.: Fourier transform-based modified phasor estimation method immune to the effect of the DC offsets. IEEE Trans. Power Deliv. 24(3), 1104–1111 (2009)CrossRefGoogle Scholar
  5. 5.
    Domínguez, J.L., Argüelles, J.F., Arrieta, M.A., Jaurrieta, B.L., Benito, M.S., Zugazaga, I.A.: New quick-convergence invariant digital filter for phasor estimation. Electric Power Syst. Res. 79(5), 705–713 (2009)CrossRefGoogle Scholar
  6. 6.
    Jiang, Z., Miao, S., Liu, P.: A modified empirical mode decomposition filtering-based adaptive phasor estimation algorithm for removal of exponentially decaying DC offset. IEEE Trans. Power Deliv. 29(3), 1326–1334 (2014)CrossRefGoogle Scholar
  7. 7.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and thehilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Lin, L., Wang, Y., Zhou, H.: Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv. Adapt. Data Anal. 01(04), 543–560 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Xu, Z., Huang, B., Zhang, F.: Envelope approach based on special knots for empirical mode decomposition. Electron. Lett. 45(9), 480–481 (2009)CrossRefGoogle Scholar
  10. 10.
    Kaiser, J.F.: On a simple algorithm to calculate the ‘energy’ of a signal. In: International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 381–338 (1990)Google Scholar
  11. 11.
    Maragos, P., Kaiser, J.F., Quatieri, T.F.: On amplitude and frequency demodulation using energy operators. IEEE Trans. Signal Process. 41(4), 1532–1550 (1993)zbMATHCrossRefGoogle Scholar
  12. 12.
    Horowitz, S.H., Phadke, A.G.: Power System Relaying, p. 56. Research Studies Press, Taunton, UK (1992)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Debadatta Amaresh Gadanayak
    • 1
    Email author
  • Ranjan Kumar Mallick
    • 1
  1. 1.Siksha O Anusandhan deemed to be UniversityBhubaneswarIndia

Personalised recommendations