Metaheuristic Algorithms in Industrial Process Optimisation: Performance, Comparison and Recommendations

  • Tatjana SibalijaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1198)


The process parameters design is one of the most demanding tasks in a modern industry, aiming to find optimal process parameters that meet strict requirements for process responses. Various methods have been employed to tackle this problem, including metaheuristic algorithms. The objective of this paper is twofold. Firstly, it presents a review analysis and comparison of metaheuristics’ performance in optimising industrial processes as evidenced from the literature, with a particular focus on the most commonly used algorithms: genetic algorithm (GA), simulated annealing (SA), and particle swarm optimisation (PSO). Secondly, an intelligent method for parametric multiresponse process design, based on the soft computing techniques, is presented. GA, SA and PSO are used as an optimisation tool, and comparison of their results in real case studies is performed including two criteria: (i) accuracy of an obtained optimum; (ii) a number of objective function evaluations needed to reach an optimum. Tuning of the algorithms’ own parameters is also discussed, which is especially interesting due to a different nature of three algorithms: a single point-based algorithm (SA), a population-based algorithm (GA), and a population-based algorithm with swarm intelligence (PSO). The algorithms’ robustness, i.e. sensitivity in respect to the algorithm-specific parameters tuning is studied and introduced as the third criterion in comparing the algorithms’ performances. The concluding remarks are drawn from this analysis, followed by the recommendations for an efficient metaheuristics’ application in optimising industrial processes.


Process parameter design Metaheuristic algorithms Genetic Algorithm (GA) Simulated annealing (SA) Particle swarm optimisation (PSO) 


  1. 1.
    Taguchi, G.: Introduction to Quality Engineering. Asian Productivity Organization. UNIPUB, New York (1986)Google Scholar
  2. 2.
    Sibalija, T., Majstorovic, V.: The Advanced Multiresponse Process Optimisation. An Intelligent and Integrated Approach. Springer, Switzerland (2016). Scholar
  3. 3.
    Sivanandam, S.N., Deepa, S.N.: Introduction to Genetic Algorithms. Springer-Verlag, Heidelberg (2008). Scholar
  4. 4.
    Spall, J.: Introduction to Stochastic Search and Optimisation. Wiley, New Jersey (2003)CrossRefGoogle Scholar
  5. 5.
    Zandieh, M., Amiri, M., Vahdani, B., Soltani, R.: A robust parameter design for multi-response problems. J. Comput. Appl. Math. 230(2), 463–476 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948. IEEE, Perth (1995)Google Scholar
  7. 7.
    Pant, M., Thangaraj, R., Abraham, A.: Particle swarm optimization: performance tuning and empirical analysis. In: Abraham, A., Hassanien, A.E., Siarry, P., Engelbrecht, A. (eds.) Foundations of Computational Intelligence. Studies in Computational Intelligence, vol. 203, pp. 101–128. Springer, Heidelberg (2009). Scholar
  8. 8.
    Li, T.S., Hsu, C.M.: Parameter optimization of sub-35 nm contact-hole fabrication using particle swarm optimization approach. Expert Syst. Appl. 37, 878–885 (2010)CrossRefGoogle Scholar
  9. 9.
    Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, New York (2005). Scholar
  10. 10.
    Lu, M., Wevers, K.: Grey system theory and applications: a way forward. J. Grey Syst. 10(1), 47–54 (2007)Google Scholar
  11. 11.
    Sibalija, T., Majstorovic, V.: Multi-response optimisation of thermosonic copper wire-bonding process with correlated responses. Int. J. Adv. Manuf. Technol. 42, 363–371 (2009). Scholar
  12. 12.
    Sibalija, T., Majstorovic, V., Miljkovic, Z.: An intelligent approach to robust multi-response process design. Int. J. Prod. Res. 49, 5079–5097 (2011)CrossRefGoogle Scholar
  13. 13.
    Sibalija, T., Majstorovic, V.: Novel approach to multi-response optimisation for correlated responses. FME Trans. 38, 39–48 (2010)Google Scholar
  14. 14.
    Sibalija, T., Majstorovic, V., Sokovic, M.: Taguchi-based and intelligent optimisation of a multiresponse process using historical data. Strojniski vestnik 57, 357–365 (2011)CrossRefGoogle Scholar
  15. 15.
    Sibalija, T., Petronic, S., Majstorovic, V., Prokic-Cvetkovic, R., Milosavljevic, A.: Multi-response design of Nd:YAG laser drilling of Ni-based superalloy sheets using Taguchi’s quality loss function, multivariate statistical methods and artificial intelligence. Int. J. Adv. Manuf. Technol. 54, 537–552 (2011). Scholar
  16. 16.
    Sibalija, T., Petronic, S., Majstorovic, V., Milosavljevic, A.: Modelling and optimisation of laser shock peening using an integrated simulated annealing-based method. Int. J. Adv. Manuf. Technol. 73, 1141–1158 (2014). Scholar
  17. 17.
    Sibalija, T., Petronic, S., Milovanovic, D.: Experimental optimization of nimonic 263 laser cutting using a particle swarm approach. Metals 9, 1147 (2019)CrossRefGoogle Scholar
  18. 18.
    Sibalija, T.: Application of simulated annealing in process optimization: a review. In: Scollen, A., Hargraves, T. (eds.) Simulated Annealing: Introduction, Applications and Theory, pp. 1–14. Nova Science Publishers, New York (2018)Google Scholar
  19. 19.
    Sibalija, T.: Particle swarm optimisation in designing parameters of manufacturing processes: a review (2008–2018). Appl. Soft Comput. 84, 105743 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Belgrade Metropolitan UniversityBelgradeSerbia

Personalised recommendations