• Surbhi BhatiaEmail author
  • Poonam Chaudhary
  • Nilanjan Dey
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This book focuses on developing an overall system for summarizing opinions based on aspects. There are mainly three pieces of work.


  1. 1.
    Navigli, R., & Velardi, P. (2004). Learning domain ontologies from document warehouses and dedicated web sites. Computational Linguistics, 30(2), 151–179.CrossRefGoogle Scholar
  2. 2.
    Huang, E. H., Socher, R., Manning, C. D., & Ng, A. Y. (2012). MaxMax: A graph-based soft clustering algorithm applied to word sense induction. In Proceedings of the 14th International Conference on Computational Linguistics and Intelligent Text Processing (pp. 368–381).Google Scholar
  3. 3.
    Moro, A., Raganato, A., & Navigli, R. (2014). Entity linking meets word sense disambiguation: A unified approach. Transactions of the Association for Computational Linguistics, 2, 231–244.CrossRefGoogle Scholar
  4. 4.
    Maynard, D., Bontcheva, K., & Rout, D. (2012). Challenges in developing opinion mining tools for social media. Proceedings of the@ NLP can u tag# usergeneratedcontent (pp. 15–22).Google Scholar
  5. 5.
    Bhatia, M., Sharma, S., Bhatia, S., & Alojail, M., (2020). Fog computing mitigate limitations of cloud computing. International Journal of Recent Technology and Engineering (IJRTE), SCOPUS.Google Scholar
  6. 6.
    Gruhl, D., Chavet, L., Gibson, D., Meyer, J., Pattanayak, P., Tomkins, A., & Zien, J. (2004). How to build a WebFountain: An architecture for very large-scale text analytics. IBM Systems Journal, 43(1), 64–77.Google Scholar
  7. 7.
    Scaffidi, C., Bierhoff, K., Chang, E., Felker, M., Ng, H., & Jin, C. (2007). Red opal: Product-feature scoring from reviews. In Proceedings of the 8th ACM Conference on Electronic Commerce (pp. 182–191). ACM.Google Scholar
  8. 8.
    Bhatia, S., & Madaan, R. (2020). Understanding the role of emotional intelligence in usage of social media. In Confluence 2020, Amity University. IEEE.Google Scholar
  9. 9.
    Holmes, G., Donkin, A., & Witten, I. H. (1994). Weka: A machine learning workbench. In Intelligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New Zealand Conference (pp. 357–361). IEEE.Google Scholar
  10. 10.
    Chatterjee, S., Datta, B., Sen, S., Dey, N., & Debnath, N. C. (2018, January) Rainfall prediction using hybrid neural network approach. In 2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom) (pp. 67–72). IEEE.Google Scholar
  11. 11.
    Lin, C. Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text summarization Branches out: Proceedings of the ACL-04 Workshop (Vol. 8).Google Scholar
  12. 12.
    Kaur, J., & Saini, J. R. (2015). A study of text classification natural language processing algorithms for Indian languages. The VNSGU Journal of Science Technology, 4(1), 162–167.Google Scholar
  13. 13.
    Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In ACL (Vol. 7, pp. 440–447).Google Scholar
  14. 14.
    Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, Association for Computational Linguistics (Vol. 10 pp. 79–86).Google Scholar
  15. 15.
    Ganesan, K. A., Zhai, C. X., & Han, J. (2010). Opinosis: A graph based approach to abstractive summarization of highly redundant opinions. In Proceedings of the 23rd International Conference on Computational Linguistics (COLING ‘10).Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Information SystemsKing Faisal UniversityAl HasaSaudi Arabia
  2. 2.Department of Computer Science and Engineering and Information TechnologyThe NorthCap UniversityGurugramIndia
  3. 3.Department of Information TechnologyTechno India College of TechnologyKolkataIndia

Personalised recommendations