Advertisement

Analysis of Offset Quadrature Amplitude Modulation in FBMC for 5G Mobile Communication

  • Ayush Kumar AgrawalEmail author
  • Manisha Bharti
Conference paper
  • 9 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1164)

Abstract

Next-generation mobile communication is required to allocate the resources to all users smoothly and efficiently. But the allocation of resources is difficult in present 4G mobile communication systems using OFDM and hence in this manuscript, a new technique based on Filter Bank Multicarrier (FBMC) modulation and demodulation are designed and employed. The proposed scheme will help devices to communicate automatically employing machine learning techniques including higher data rates as per the need of users with less bit error rate. Offset quadrature amplitude modulation (OQAM) technique for FBMC is discussed and analyzed to achieve a lower bit error rate for the latest generation, 5G wireless communication

Keywords

OQAM FBMC BER OFDM MIMO 5G mobile communication 

References

  1. 1.
    B. Farhang-Boroujeny, OFDM versus filter bank multicarrier. IEEE Signal Process. Mag. 28(3), 92–112 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Chen, D. Qu, T. Jiang, Prototype filter optimization to minimize stop band energy with NPR constraint for filter bank multicarrier modulation systems. IEEE Trans. Signal Process. 61(1), 159–169 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Siohan, C. Siclet, N. Lacaille, Analysis and design of OFDM/OQAM systems based on filterbank theory. IEEE Trans. Signal Process. 50(5), 1170–1183 (2002)CrossRefGoogle Scholar
  4. 4.
    M.U. Rahim, T.H. Stitz, M. Renfors, Analysis of clipping-based PAPR-reduction in multicarrier systems, in Proceedings of IEEE VTC (Barcelona, Spain, 2009, April), pp. 1–5Google Scholar
  5. 5.
    Cisco, Visual Networking Index, White paper, Feb. 2015 [Online]. Available: www.Cisco.com
  6. 6.
    T.S. Rappaport, W. Roh, K. Cheun, Wireless engineers long considered high frequencies worthless for cellular systems. They couldn’t be more wrong. IEEE Spectr. 51(9), 34–58 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Agiwal, A. Roy, N. Saxena, Next generation 5G wireless networks: a comprehensive survey. IEEE Commun. Surv. Tutorials 18(3), 1617–1655Google Scholar
  8. 8.
    M. Shafi, A.F. Molisch, P.J. Smith, T. Haustein, P. Zhu, P.D. Silva, F. Tufvesson, A. Benjebbour, G. Wunder, 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 35(6), 1201–1221 (2017)Google Scholar
  9. 9.
    L. Zhang, P. Xiao, A. Zafar, A. ulQuddus, R. Tafazolli, FBMC system: an insight into doubly dispersive channel impact. IEEE Trans. Veh. Technol. 66(5), 3942–3956 (2017)Google Scholar
  10. 10.
    M. Bellanger, Maurice, D. Le Ruyet, D. Roviras, M. Terré, J. Nossek, L. Baltar, Q. Bai, D. Waldhauser, M. Renfors, T. Ihalainen, FBMC physical layer: a primer. PHYDYAS, 25(4), 7–10 (2010)Google Scholar
  11. 11.
    J. Zhang, M. Zhao, J. Zhong, P. Xiao, T. Yu, Optimised index modulation for filter bank multicarrier system. IET Commun. 11(4), 459–467 (2017)Google Scholar
  12. 12.
    L. Zhang, A. Ijaz, P. Xiao, M.M. Molu, R. Tafazolli, Filtered OFDM systems, algorithms, and performance analysis for 5G and beyond. IEEE Trans. Commun. 66(3), 1205–1218 (2018)CrossRefGoogle Scholar
  13. 13.
    S. Kaur, L. Kansal, G.S. Gaba, N. Safarov, Survey of filter bank multicarrier (FBMC) as an efficient waveform for 5G. Int. J. Pure Appl. Math. 118(7), 45–49 (2018)Google Scholar
  14. 14.
    I.A. Shaheen, A. Zekry, F. Newagy, R. Ibrahim, Performance evaluation of PAPR reduction in FBMC system using nonlinear companding transform. ICT Express (2018)Google Scholar
  15. 15.
    S. Patil, S. Patil, U. Kolekar, Implementation Of 5G using OFDM and FBMC (Filter Bank Multicarrier)/OQAM (Offset Quadrature Amplitude Modulation). Int. J. Innovative Sci. Eng. Technol. 5(1), 11–15 (2018)Google Scholar
  16. 16.
    H. Bouhadda, H. Shaiek, Y. Medjahdi, D. Roviras, R. Zayani, R. Bouallegue, Sensitivity analysis of FBMC signals to non linear phase distortion, in 2014 IEEE International Conference on Communications Workshops (ICC). IEEE (2014), pp. 73–78Google Scholar
  17. 17.
    R. Zakaria, D. Le-Ruyet, SER analysis by Gaussian interference approximation for filter bank based multicarrier system in the presence of phase error, in IEEE International Conference on Communications (ICC) (2015)Google Scholar
  18. 18.
    H. Bouhadda, H. Shaiek, D. Roviras, R. Zayani, Y. Medjahdi, R. Bouallegue, Theoretical analysis of BER performance of nonlinearly amplified FBMC/OQAM and OFDM signals. EURASIP J. Adv. Signal Process. 2014(1), 60 (2014)Google Scholar
  19. 19.
    A. Sahin, I. Guvenc, H. Arslan, A survey on multicarrier communications: prototype filters, lattice structures, and implementation aspects. IEEE Commun. Surv. Tutorials 16(3), 1312–1338 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Nam, M. Choi, S. Han, C. Kim, S. Choi, D. Hong, A new filter-bank multicarrier system with two prototype filters for QAM symbols transmission and reception. IEEE Trans. Wireless Commun. 15(9), 5998–6009 (2016)CrossRefGoogle Scholar
  21. 21.
    Y.H. Yun, C. Kim, K. Kim, Z. Ho, B. Lee, J.-Y. Seol, A new waveform enabling enhanced QAM-FBMC systems, in IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), (2015) pp. 116–120Google Scholar
  22. 22.
    C. Kim, Y.H. Yun, K. Kim, J.-Y. Seol, Introduction to QAM- FBMC: from waveform optimization to system design. IEEE Commun. Mag. 54(11), 66–73 (2016)CrossRefGoogle Scholar
  23. 23.
    S. Schwarz, M. Rupp, Society in motion: challenges for LTE and beyond mobile communications. IEEE Commun. Mag. Feature Topic LTE Evolution 54(5) (2016)Google Scholar
  24. 24.
    C. Lélé, P. Siohan, R. Legouable, The Alamouti scheme with CDMA-OFDM/OQAM. EURASIP J. Adv. Signal Process 2010, 1–13 (2010). (Article ID 703513)Google Scholar
  25. 25.
    R. Zakaria, D. Le Ruyet, A novel filter-bank multicarrier scheme to mitigate the intrinsic interference: application to MIMO systems. IEEE Trans. Wireless Commun. 11(3), 1112–1123 (2012)Google Scholar
  26. 26.
    R. Nissel, M. Rupp, Bit error probability for pilot-symbol aided channel estimation in FBMC-OQAM, in IEEE International Conference on Communications (ICC) (Kuala Lumpur, Malaysia, May 2016)Google Scholar
  27. 27.
    L.G. Baltar, J.A. Nossek, Multicarrier systems: a comparison between filter bank based and cyclic prefix based OFDM, in Proceedings of OFDM 2012, 17th International OFDM Workshop 2012 (InOWo’12) (VDE, 2012), pp. 1–5Google Scholar
  28. 28.
    R. Nissel, Markus Rupp, OFDM and FBMCOQAM in doubly-selective channels: calculating the bit error probability. IEEE Commun. Lett. 21(6), 1297–1300 (2017)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.National Institute of Technology DelhiDelhiIndia

Personalised recommendations