Cryptosystem Based on Hybrid Chaotic Structured Phase Mask and Hybrid Mask Using Gyrator Transform

  • Shivani Yadav
  • Hukum SinghEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1164)


A novel asymmetric cryptosystem grounded on hybrid chaotic structured phase mask and hybrid mask using gyrator transform is proposed in this paper. Asymmetric cryptosystem primes to different keys for encryption and decryption of an image. To improve the security of the scheme, we introduce hybrid chaotic structured phase mask (HCSPM) instead of random phase mask (RPM). CSPM is a combination of structured phase mask (SPM) and logistic map in the algorithm, and usage of it leads to extra security for the scheme. SPM is made by using Fresnel zone plates and radial Hilbert transform. The different parameters used in the algorithm provide extra key space and benefits to fortify the system. The proposed scheme is vigorous against numerous attacks.


Gyrator transform Chaotic structured phase mask Hybrid chaotic structured phase mask MSE 



The author wishes to acknowledge the management of The NorthCap University for their motivation that lent sustenance support throughout the paper.


  1. 1.
    B. Javidi, Optical and Digital Techniques for Information Security (Springer Science + Business Media, Berlin, 2005)CrossRefGoogle Scholar
  2. 2.
    O. Matoba, T. Nomura, E. Perez-Cabre, M.S. Millan, B. Javidi, Optical techniques for information security. Proc IEEE 97, 1128–1148 (2009)Google Scholar
  3. 3.
    P. Refregier, B. Javidi, Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767–769 (1995)Google Scholar
  4. 4.
    G. Unnikrishnan, K. Singh, Double random fractional Fourier domain encoding for optical security. Opt. Eng. 39(11), 2853–2859 (2000)Google Scholar
  5. 5.
    G. Situ, J. Zhang, Double random-phase encoding in the Fresnel domain. Opt. Lett. 29, 1584–1586 (2004)Google Scholar
  6. 6.
    J.A. Rodrigo, T. Alieva, M.L. Calvo, Gyrator transform: properties and applications. Opt. Express. 15, 2190–2203 (2007)Google Scholar
  7. 7.
    H. Singh, A.K. Yadav, S. Vashisth, K. Singh, Fully phase image encryption using double random-structured phase masks in gyrator domain. Appl. Opt. 53, 6472–6481 (2014)Google Scholar
  8. 8.
    H. Singh, Nonlinear optical double image encryption using random-optical vortex in fractional Hartley transform domain. Opt. Appl. 47(4), 557–578 (2017)Google Scholar
  9. 9.
    W. Qin, X. Peng, Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt. Lett. 35, 118–120 (2010)Google Scholar
  10. 10.
    H. Singh, Devil’s vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in Gyrator wavelet transform domain. Opt. Lasers Eng. 81, 125–139 (2016)Google Scholar
  11. 11.
    H. Singh, Optical cryptosystem of color images based on fractional, wavelet transform domains using random phase masks. Indian J. Sci. Technol. 9S(1), 1–15 (2016)Google Scholar
  12. 12.
    H. Singh, Cryptosystem for securing image encryption using structured phase masks in Fresnel Wavelet transform domain. 3D Res. 7(34), (2016).
  13. 13.
    R. Kumar, B. Bhaduri, Optical image encryption using Kronecker product and hybrid phase masks. Opt. Laser Technol. 95, 51–55 (2017)Google Scholar
  14. 14.
    H. Singh, Hybrid structured phase mask in frequency plane for optical double image encryption in gyrator transform domain. J. Mod. Opt. 65(18), 2065–2078 (2018)Google Scholar
  15. 15.
    J.F. Barrera, R. Henao, R. Torroba, Fault tolerances using toroidal zone plate encryption. Opt. Commun. 256(4), 489–494 (2005)Google Scholar
  16. 16.
    J.A. Davis, D.E. McNamara, D.M. Cottrell, J. Campos, Image processing with the radial Hilbert transform: theory and experiments. Opt. Lett. 25(2), 99–101 (2000)Google Scholar
  17. 17.
    R. Girija, H. Singh, Symmetric cryptosystem based on chaos structured phase masks and equal modulus decomposition using fractional Fourier transform. 3D Res. 9(42), (2018).
  18. 18.
    L. Sui, K. Duan, J. Liang, X. Hei, Asymmetric double-image encryption based on cascaded discrete fractional random transform and logistic maps. Opt. Express 22, 10605–10621 (2014)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Department of Applied SciencesThe NorthCap UniversityGurugramIndia

Personalised recommendations