Advertisement

Damage Detection in Smart Composite Plates

  • Ranjan GanguliEmail author
Chapter
  • 23 Downloads

Abstract

In this chapter, a damage detection approach for a smart composite structure is presented. A brief background on smart structures is provided in Sect. 5.1. Smart structural systems have gained importance in recent years and have found applications in aerospace, automotive, and space applications [1, 2, 3, 4]. A structure can be made smart by introducing sensors, actuators, and information processing algorithms.

References

  1. 1.
    Chopra, I. (2002). Review of state of art of smart structures and integrated systems. AIAA Journal, 40, 2145–2187.CrossRefGoogle Scholar
  2. 2.
    Irschik, H. (2002). A review on static and dynamic shape control of structures by piezoelectric actuation. Engineering Structures, 24, 5–11.CrossRefGoogle Scholar
  3. 3.
    Hurlebausa, H., & Gaul, L. (2006). Smart structure dynamics. Mechanical Systems and Signal Processing, 20, 255–281.CrossRefGoogle Scholar
  4. 4.
    Loewy, R. G. (1997). Recent developments in smart structures with aeronautical applications smart material. Structure, 6, 11–42.Google Scholar
  5. 5.
    Umesh, K., & Ganguli, R. (2011). Composite material and piezoelectric coefficient uncertainty effects on structural health monitoring using feedback control gains as damage indicators. Structural Health Monitoring, 10, 115–129.CrossRefGoogle Scholar
  6. 6.
    Ihn, J. B., & Chang, F. K. (2008). Pitch-catch active sensing methods in structural health monitoring for aircraft structures. Structural Health Monitoring, 7(1), 5–19.CrossRefGoogle Scholar
  7. 7.
    Auweraer, H. V., & Peeters, B. (2003). International research projects on structural health monitoring: An overview. Structural Health Monitoring, 2(4), 341–358.CrossRefGoogle Scholar
  8. 8.
    Chang, P. C., Flatau, A., & Liu, S. C. (2003). Review paper: Health monitoring of civil infrastructure. Structural Health Monitoring, 2(3), 257–267.CrossRefGoogle Scholar
  9. 9.
    Worden, K., & Dulieu-Barton, J. M. (2004). An overview of intelligent fault detection in systems and structures. Structural Health Monitoring, 3(1), 85–98.CrossRefGoogle Scholar
  10. 10.
    Carden, E. P., & Fanning, P. (2004). Vibration based condition monitoring: A review. Structural Health Monitoring, 3(4), 355–377.CrossRefGoogle Scholar
  11. 11.
    Mal, A., Ricci, F., Banerjee, S., & Shih, F. (2005). A conceptual structural health monitoring system based on vibration and wave propagation. Structural Health Monitoring, 4(3), 283–293.CrossRefGoogle Scholar
  12. 12.
    Raghavan, A., & Cesnik, C. E. S. (2006). 3-D Elasticity-based modeling of anisotropic piezocomposite transducers for guided wave structural health monitoring. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1–4 May 2006. Newport, Rhode Island, AIAA, 2006–1793.Google Scholar
  13. 13.
    Chrysochoidis, N. A., & Saravanos, D. A. (2009). High-frequency dispersion characteristics of smart delaminated composite beams. Journal of Intelligent Material Systems and Structures, 20(9), 1057–1068.Google Scholar
  14. 14.
    Qing, X. P., Beard, S. J., Kumar, A., Ooi, T. K., & Chang, F. K. (2007). Built-in sensor network for structural health monitoring of composite structure. Journal of Intelligent Material Systems and Structures, 18(1), 39–49.CrossRefGoogle Scholar
  15. 15.
    Hu, N., Fukunaga, H., & Kameyama, M. (2006). Identification of delaminations in composite laminates. Journal of Intelligent Material Systems and Structures, 17(8–9), 671–683.CrossRefGoogle Scholar
  16. 16.
    Kirikera, G. R., Shinde, V., Schulz, M. J., Ghoshal, A., Sundaresan, M. J., Allemang, R. J., et al. (2008). A structural neural system for real-time health monitoring of composite materials. Structural Health Monitoring, 7(1), 65–83.Google Scholar
  17. 17.
    Su, Z., & Ye, L. (2004). Fundamental lamb mode-based delamination detection for CF/EP composite laminates using distributed piezoelectrics. Structural Health Monitoring, 3(1), 43–68.CrossRefGoogle Scholar
  18. 18.
    Ghoshal, A., Chattopadhyay, A., Schulz, M. J., Thornburgh, R., & Waldron, K. (2003). Experimental investigation of damage detection in composite material structures using a laser vibrometer and piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 14(8), 521–537.CrossRefGoogle Scholar
  19. 19.
    Hamey, C. S., Lestari, W., Qiao, P., & Song, G. (2004). Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes. Structural Health Monitoring, 3(4), 333–353.CrossRefGoogle Scholar
  20. 20.
    Giurgiutiu, V., & Zagrai, A. (2005). Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method. Structural Health Monitoring, 4(2), 99–118.CrossRefGoogle Scholar
  21. 21.
    Sankararaman, S., & Mahadevan, S. (2009). Uncertainty quantification in structural health monitoring. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 17th, 4–7 May 2009. Palm Springs, California, AIAA, 2009–2377.Google Scholar
  22. 22.
    Pawar, P. M., & Ganguli, R. (2003). Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Computer Methods in Applied Mechanics and Engineering, 192(16–18), 2031–2057.zbMATHCrossRefGoogle Scholar
  23. 23.
    Petryna, Y. S., & Kratzig, W. B. (2005). Compliance-based structural damage measure and its sensitivity to uncertainties. Computers and Structures, 83, 1113–1133.CrossRefGoogle Scholar
  24. 24.
    Chandrashekhar, M., & Ganguli, R. (2009). Uncertainty handling in structural damage detection using fuzzy logic and probabilistic simulation. Mechanical Systems and Signal Processing, 23, 384–404.CrossRefGoogle Scholar
  25. 25.
    Chandrashekhar, M., & Ganguli, R. (2009). Damage assessment of structures with uncertainty by using mode-shape curvatures and fuzzy logic. Journal of Sound and Vibration, 326, 939–957.CrossRefGoogle Scholar
  26. 26.
    Bakhary, N., Hao, H., & Deeks, A. J. (2007). Damage detection using artificial neural network with consideration of uncertainties. Engineering Structures, 29(11), 2806–2815.CrossRefGoogle Scholar
  27. 27.
    Lew, J. S. (2008). Reduction of uncertainty effect on damage identification using feedback control. Journal of Sound and Vibration, 318, 903–910.CrossRefGoogle Scholar
  28. 28.
    Murugan, S., Ganguli, R., & Harursampath, D. (2008). Aeroelastic response of composite helicopter rotor with random material properties. Journal of Aircraft, 45(1), 306–322.CrossRefGoogle Scholar
  29. 29.
    Onkar, A. K., Upadhyay, C. S., & Yadav, D. (2007). Stochastic finite element buckling analysis of laminated plates with circular cutout under uniaxial compression. Journal of Applied Mechanics, 74, 798–809.CrossRefGoogle Scholar
  30. 30.
    Liang, Y. C., & Hwu, C. (1996). Electromechanical analysis of defects in piezoelectric materials. Smart Materials and Structures, 5(3), 314–320.CrossRefGoogle Scholar
  31. 31.
    Burianova, L., Kopal, A., & Nosek, J. (2003). Characterization of advanced piezoelectric materials in the wide temperature range. Materials Science and Engineering B, 99, 187–191.CrossRefGoogle Scholar
  32. 32.
    Alguero, M., Cheng, B. L., Guiu, F., Reece, M. J., Poole, M., & Aiford, N. (2001). Degradation of the \(d_{33}\) piezoelectric coefficient for PZT ceramics under static and cyclic compressive loading. Journal of European Ceramic Society, 21, 1437–1440.CrossRefGoogle Scholar
  33. 33.
    Li, F., Xu, Z., Wei, X. Y., & Yao, X. (2009). Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method. Journal of Physics D: Applied Physics, 42(9), 095417.CrossRefGoogle Scholar
  34. 34.
    Rabinovitch, O., & Vinson, J. R. (2002). Adhesive layer effects in surface-mounted piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 13(11), 689–704.CrossRefGoogle Scholar
  35. 35.
    Park, J. M., Kim, D. S., & Han, S. B. (2000). Properties of interfacial adhesion for vibration controllability of composite materials as smart structures. Composites Science and Technology, 60(10), 1953–1963.CrossRefGoogle Scholar
  36. 36.
    Araujo, A. L., Soares, C. M. M., Herskovits, J., & Pedersen, P. (2009). Estimation of piezoelastic and viscoelastic properties in laminated structures. Composite Structures, 87, 168–174.CrossRefGoogle Scholar
  37. 37.
    Palma, R., Rus, G., & Gallego, R. (2009). Probabilistic inverse problem and system uncertainties for damage detection in piezoelectrics. Mechanics of Materials, 41, 1000–1016.CrossRefGoogle Scholar
  38. 38.
    Ghanem, R. (1999). Ingredients for a general purpose stochastic finite elements implementation. Computer Methods in Applied Mechanics and Engineering, 168, 19–34.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Stefanou, G. (2009). The stochastic finite element method: Past, present and future. Computer Methods in Applied Mechanics and Engineering, 198, 1031–1051.zbMATHCrossRefGoogle Scholar
  40. 40.
    Crestaux, T., Maitre, O. L., & Martinez, J. M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering and System Safety, 94, 1161–1172.CrossRefGoogle Scholar
  41. 41.
    Guoliang, J., Lin, C., & Jiamei, D. (1993). Monte Carlo finite element method of structure reliability analysis. Reliability Engineering and System Safety, 40, 77–83.CrossRefGoogle Scholar
  42. 42.
    Vinckenroy, G. V., & de Wilde, W. P. (1995). The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behavior of composite materials structural components. Composite Structures, 32, 247–253.CrossRefGoogle Scholar
  43. 43.
    Carrere, N., Rollet, Y., Leroy, F. H., & Maire, J. F. (2009). Efficient structural computations with parameters uncertainty for composite applications. Composites Science and Technology, 69, 1328–1333.CrossRefGoogle Scholar
  44. 44.
    Marseguerra, M., & Zio, E. (2009). Monte Carlo simulation for model-based fault diagnosis in dynamic systems. Reliability Engineering and System Safety, 94, 180–186.CrossRefGoogle Scholar
  45. 45.
    Allegri, G., Corradi, S., & Marchetti, M. (2006). Stochastic analysis of the vibrations of an uncertain composite truss for space applications. Composites Science and Technology, 66, 273–282.CrossRefGoogle Scholar
  46. 46.
    Fishman, G. S. (1996). Monte Carlo: Concepts, algorithms, and applications. New York: Springer.Google Scholar
  47. 47.
    Chandrashekhar, M., & Ganguli, R. (2009). Structural damage detection using modal curvature and fuzzy logic. Structural Health Monitoring, 8(4), 267–282.CrossRefGoogle Scholar
  48. 48.
    Zhao, J., Tang, J., & Wang, K. W. (2008). Enhanced statistical damage identification using frequency-shift information with tunable piezoelectric transducer circuitry. Smart Materials and Structures, 17, 065003.Google Scholar
  49. 49.
    Umesh, K., & Ganguli, R. (2009). Shape and vibration control of smart composite plate with matrix cracks. Smart Materials and Structures, 18, 025002.Google Scholar
  50. 50.
    Pawar, P. M., & Ganguli, R. (2005). On the effect of matrix cracks in composite helicopter rotor blades. Composites Science and Technology, 65, 581–594.CrossRefGoogle Scholar
  51. 51.
    Liu, S., & Chang, F. K. (1994). Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter. Journal of Composite Materials, 28(10), 940–977.CrossRefGoogle Scholar
  52. 52.
    Johnson, P., & Chang, F. K. (2001). Characterization of matrix crack-induced laminate failure—Part I: Experiments. Journal of Composite Materials, 35(22), 2009–2035.CrossRefGoogle Scholar
  53. 53.
    Johnson, P., & Chang, F. K. (2001). Characterization of matrix crack-induced laminate failure—Part II: Analysis and verifications. Journal of Composite Materials, 35(22), 2037–2074.Google Scholar
  54. 54.
    Chandrashekhara, K., & Agarval, A. N. (1993). Active vibration control of laminated composite plates using piezoelectric devices: A finite element approach. Journal of Intelligent Material Systems and Structures, 4, 496–508.CrossRefGoogle Scholar
  55. 55.
    Adolfsson, E., & Gudmundson, P. (1997). Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks. International Journal of Solids and Structures, 34(16), 2035–2060.zbMATHCrossRefGoogle Scholar
  56. 56.
    Lam, K. Y., Peng, X. Q., Liu, G. R., & Reddy, J. N. (1997). A finite-element model for piezoelectric composite laminates. Smart Materials and Structures, 6, 583–591.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations