Advertisement

Anthropogenic Perturbations of the Carbon and Nitrogen Cycles in the East Sea (Sea of Japan)

  • Kitack LeeEmail author
  • Eunil Lee
  • Chang-Ho Lee
Chapter
  • 55 Downloads
Part of the Atmosphere, Earth, Ocean & Space book series (AEONS)

Abstract

The dynamic overturning circulation in the East Sea facilitates the absorption of anthropogenic CO2 by effectively transporting it from the surface to the interior of the sea. However, recent weakening of this overturning circulation has decreased the transport of anthropogenic CO2 and O2 from the surface to the interior of the sea, but accelerated the acidification of deep water in the basin; the rate of acidification in the deep water is higher than the rate at the surface. An emerging perturbation to the East Sea is an increase in the input of anthropogenic nitrogen. The concentration of surface nitrate (N) relative to that of phosphate (P) in the East Sea increased disproportionally over the period since 1980. The increase in the N concentration in the East Sea and adjacent seas has probably been driven primarily by deposition of pollutant nitrogen from atmospheric and riverine sources. A review of these critical results indicates that the East Sea provides insights into how future global warming and human perturbations might alter the nitrogen and carbon cycles and their interactions.

Keywords

The East Sea Anthropogenic CO2 Circulation Water column Ventilation Anthropogenic nitrogen N* (the seawater concentration of N relative to that of P) 

Notes

Acknowledgments

This work was primarily supported by Mid-career Researcher Program (No. 2018R1A2A1A19019281) of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning and by “Ieodo Ocean Research Station” project of the Korea Hydrographic and Oceanographic Agency, Ministry of Oceans and Fisheries.

References

  1. Akimoto H, Narita H (1994) Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in Asia with 1° × 1° resolution. Atmos Environ 28:213–225CrossRefGoogle Scholar
  2. Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science 276:1052–1058CrossRefGoogle Scholar
  3. Bourgeois T, Orr JC et al (2016) Coastal-ocean uptake of anthropogenic carbon. Biogeosciences 13:4167–4185CrossRefGoogle Scholar
  4. Chen CTA, Borges AV (2009) Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res PT II 56:578–590CrossRefGoogle Scholar
  5. Chen CTA, Wang SL, Bychkov AS (1995) Carbonate chemistry of the Sea of Japan. J Geophys Res-Oceans 100:13737–13745CrossRefGoogle Scholar
  6. Chen CTA, Andreev A et al (2004) Roles of continental shelves and marginal seas in the biogeochemical cycles of the North Pacific Ocean. J Oceanogr 60:17–44CrossRefGoogle Scholar
  7. Chen CTA, Wang SL et al (2006) Carbonate chemistry and projected future changes in pH and CaCO3 saturation state of the South China Sea. Mar Chem 101:277–305CrossRefGoogle Scholar
  8. Chen CTA, Lui HK et al (2017) Deep oceans may acidify faster than anticipated due to global warming. Nat Clim Change 7:890–894CrossRefGoogle Scholar
  9. Choi SD, Lee K, Chang YS (2002) Large rate of uptake of atmospheric carbon dioxide by planted forest biomass in Korea. Global Biogeochem Cy 16.  https://doi.org/10.1029/2002GB001914
  10. Cossarini G, Querin S, Solidoro C (2015) The continental shelf carbon pump in the northern Adriatic Sea (Mediterranean Sea): Influence of wintertime variability. Ecol Model 314:118–134CrossRefGoogle Scholar
  11. Deutsch C, Emerson S, Thompson L (2006) Physical-biological interactions in North Pacific oxygen variability. J Geophys Res-Oceans 111.  https://doi.org/10.1029/2005JC003179
  12. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743CrossRefGoogle Scholar
  13. Duce RA, Laroche J et al (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320:893–897CrossRefGoogle Scholar
  14. Engel A, Piontek J et al (2014) Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms. J Plankton Res 36:641–657CrossRefGoogle Scholar
  15. Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206CrossRefGoogle Scholar
  16. Galloway JN (2000) Nitrogen mobilization in Asia. Nutr Cycl Agroecosys 57:1–12CrossRefGoogle Scholar
  17. Galloway JN, Dentener FJ et al (2004) Nitrogen cycles: Past, present, and future. Biogeochemistry 70:153–226CrossRefGoogle Scholar
  18. Gamo T (1999) Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestern Pacific: Japan Sea. Geophys Res Lett 26:3137–3140CrossRefGoogle Scholar
  19. Gamo T, Momoshima N, Tolmachyov S (2001) Recent upward shift of the deep convection system in the Japan Sea, as inferred from the geochemical tracers tritium, oxygen, and nutrients. Geophys Res Lett 28:4143–4146CrossRefGoogle Scholar
  20. Gruber N, Sarmiento JL, Stocker TF (1996) An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochem Cy 10:809–837CrossRefGoogle Scholar
  21. Gruber N, Clement D et al (2019) The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 363:1193–1199CrossRefGoogle Scholar
  22. Iglesias-rodriguez MD, Halloran PR et al (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340CrossRefGoogle Scholar
  23. Jickells TD, Buitenhuis E et al (2017) A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Global Biogeochem Cy 31:289–305Google Scholar
  24. Joos F, Plattner GK, Stocker TF et al (2003) Trends in marine dissolved oxygen: Implications for ocean circulation changes and the carbon budget. EOS Trans AGU 84:197–201CrossRefGoogle Scholar
  25. Kang J, Cho BC, Lee CB (2010) Atmospheric transport of water-soluble ions (NO3−, NH4+ and nss-SO42−) to the southern East Sea (Sea of Japan). Sci Total Environ 408:2369–2377CrossRefGoogle Scholar
  26. Kim KR, Kim K (1996) What is happening in the East Sea (Japan Sea): Recent chemical observations during CREAMS 93–96. J Kor Soc Oceanogr 31:164–172Google Scholar
  27. Kim JM, Lee K et al (2010a) Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world. Environ Sci Technol 44:8140–8143Google Scholar
  28. Kim TW, Lee K et al (2010b) Prediction of Sea of Japan (East Sea) acidification over the past 40 years using a multiparameter regression model. Global Biogeochem Cy 24.  https://doi.org/10.1029/2009GB003637
  29. Kim K, Kim KR et al (2001) Warming and structural changes in the east (Japan) Sea: A clue to future changes in global oceans? Geophys Res Lett 28:3293–3296CrossRefGoogle Scholar
  30. Kim TW, Lee K et al (2011) Increasing N abundance in the northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science 334:505–509CrossRefGoogle Scholar
  31. Kim TW, Lee K et al (2013) Interannual nutrient dynamics in Korean coastal waters. Harmful Algae 30:S15–S27CrossRefGoogle Scholar
  32. Kim IN, Lee K et al (2014a) Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346:1102–1106CrossRefGoogle Scholar
  33. Kim TW, Lee K et al (2014b) Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea. Geophys Res Lett 41:3156–3162CrossRefGoogle Scholar
  34. Kim JM, Lee K et al (2018) Phytoplankton do not produce carbon-rich organic matter in high CO2 oceans. Geophys Res Lett 45:4189–4197CrossRefGoogle Scholar
  35. Lee K, Choi SD et al (2003) An updated anthropogenic CO2 inventory in the Atlantic Ocean. Global Biogeochem Cy 17.  https://doi.org/10.1029/2003GB002067
  36. Lee K, Millero FJ, Campbell DM (1996) The reliability of the thermodynamic constants for the dissociation of carbonic acid in seawater. Mar Chem 55:233–245CrossRefGoogle Scholar
  37. Lee K, Millero FJ et al (2000) The recommended dissociation constants for carbonic acid in seawater. Geophys Res Lett 27:229–232CrossRefGoogle Scholar
  38. Lee K, Kim TW et al (2010) The universal ratio of boron to chlorinity for the North Pacific and North Atlantic oceans. Geochim Cosmochim Ac 74:1801–1811CrossRefGoogle Scholar
  39. Lee K, Sabine CL et al (2011) Roles of marginal seas in absorbing and storing fossil fuel CO2. Energy Environ Sci 4:1133–1146CrossRefGoogle Scholar
  40. Liss PS, Malin G, Turner S (1993) Production of DMS by marine phytoplankton. Dimethylsulphide: oceans, atmosphere and climate. London: Kluwer Academic Publications, pp 1–14Google Scholar
  41. Marland G, Boden TA, Andres RJ (2008) Global, regional, and national fossil fuel CO2 emissions. Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.AGoogle Scholar
  42. Mcdonagh EL, Bryden HL et al (2005) Decadal changes in the South Indian Ocean thermocline. J Climate 18:1575–1590CrossRefGoogle Scholar
  43. Mcelligott S, Byrne RH et al (1998) Discrete water column measurements of CO2 fugacity and pHT in seawater: a comparison of direct measurements and thermodynamic calculations. Mar Chem 60:63–73CrossRefGoogle Scholar
  44. Mehrbach C, Culberson CH et al (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  45. Millero FJ (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochim Cosmochim Ac 59:661–677CrossRefGoogle Scholar
  46. Millero FJ, Pierrot D et al (2002) Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Res PT I 49:1705–1723CrossRefGoogle Scholar
  47. Min DH, Warner MJ (2005) Basin-wide circulation and ventilation study in the East Sea (Sea of Japan) using chlorofluorocarbon tracers. Deep-Sea Res PT II 52:1580–1616CrossRefGoogle Scholar
  48. Moon JY, Lee K et al (2016) Temporal nutrient dynamics in the Mediterranean Sea in response to anthropogenic inputs. Geophys Res Lett 43:5243–5251CrossRefGoogle Scholar
  49. Murata A, Kumamoto Y et al (2007) Decadal increases of anthropogenic CO2 in the South Pacific subtropical ocean along 32°S. J Geophys Res-Oceans 112.  https://doi.org/10.1029/2005JC003405
  50. Nakamura T, Matsumoto K, Uematsu M (2005) Chemical characteristics of aerosols transported from Asia to the East China Sea: an evaluation of anthropogenic combined nitrogen deposition in autumn. Atmos Environ 39:1749–1758Google Scholar
  51. Ohara T, Akimoto H et al (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmos Chem Phys 7:4419–4444CrossRefGoogle Scholar
  52. Okin GS, Baker AR et al (2011) Impacts of atmospheric nutrient deposition on marine productivity: roles of nitrogen, phosphorus, and iron. Global Biogeochem Cy 25.  https://doi.org/10.1029/2010GB003858
  53. Onitsuka G, Uno I et al (2009) Modeling the effects of atmospheric nitrogen input on biological production in the Japan Sea. J Oceanogr 65:433–438CrossRefGoogle Scholar
  54. Park GH, Lee K et al (2006) Large accumulation of anthropogenic CO2 in the East (Japan) Sea and its significant impact on carbonate chemistry. Global Biogeochem Cy 20.  https://doi.org/10.1029/2005GB002676
  55. Park GH, Lee K, Tishchenko P (2008) Sudden, considerable reduction in recent uptake of anthropogenic CO2 by the East/Japan Sea. Geophys Res Lett 35.  https://doi.org/10.1029/2008GL036118
  56. Peng TH, Wanninkhof R et al (1998) Quantification of decadal anthropogenic CO2 uptake in the ocean based on dissolved inorganic carbon measurements. Nature 396:560–563CrossRefGoogle Scholar
  57. Peng TH, Wanninkghof R, Feely RA (2003) Increase of anthropogenic CO2 in the Pacific Ocean over the last two decades. Deep-Sea Res PT II 50:3065–3082CrossRefGoogle Scholar
  58. Quay P, Sonnerup R et al (2007) Anthropogenic CO2 accumulation rates in the North Atlantic Ocean from changes in the 13C/12C of dissolved inorganic carbon. Global Biogeochem Cy 21.  https://doi.org/10.1029/2006gb002761
  59. Ren H, Chen YC et al (2017) 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356:749–752CrossRefGoogle Scholar
  60. Riebesell U, Zondervan I et al (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefGoogle Scholar
  61. Riebesell U, Schulz KG et al (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–548CrossRefGoogle Scholar
  62. Sabine CL, Feely RA et al (2002) Distribution of anthropogenic CO2 in the Pacific Ocean. Global Biogeochem Cy 16.  https://doi.org/10.1029/2001GB001639
  63. Schmidtko S, Stramma L, Visbeck M (2017) Decline in global oceanic oxygen content during the past five decades. Nature 542:335–339CrossRefGoogle Scholar
  64. Talley LD, Lobanov V et al (2003) Deep convection and brine rejection in the Japan Sea. Geophys Res Lett 30. https://doi.org/10.1029/2002GL016451Google Scholar
  65. Talley LD, Tishchenko P et al (2004) Atlas of Japan (East) Sea hydrographic properties in summer, 1999. Prog Oceanogr 61:277–348CrossRefGoogle Scholar
  66. Talley LD, Min DH et al (2006) Japan/East Sea water masses and their relation to the sea’s circulation. Oceanography 19:32–49CrossRefGoogle Scholar
  67. Thomas H, Bozec Y et al (2004) Enhanced open ocean storage of CO2 from shelf sea pumping. Science 304:1005–1008CrossRefGoogle Scholar
  68. Tsunogai S, Watanabe S, Sato T (1999) Is there a “continental shelf pump” for the absorption of atmospheric CO2? Tellus B 51:701–712CrossRefGoogle Scholar
  69. Xing J, Song J et al (2018) Water-soluable nitrogen and phosphorus in aerosols and dry deposition in Jianzhou Bay, North China: Deposition velocities, orignins and biogeochemical implications. Atmos Res 207:90–99CrossRefGoogle Scholar
  70. Zhang H, Cao L (2016) Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification. Sci Rep-UK 6:20284CrossRefGoogle Scholar
  71. Zhang JZ, Wanninkhof R, Lee K (2001) Enhanced new production observed from the diurnal cycle of nitrate in an oligotrophic anticyclonic eddy. Geophys Res Lett 28:1579–1582CrossRefGoogle Scholar
  72. Zhang G, Zhang J, Liu S (2007) Characterization of nutrients in the atmospheric wet and dry deposition observed at the two monitoring sites over Yellow Sea and East China Sea. J Atmos Chem 57:41–57CrossRefGoogle Scholar
  73. Zhang SH, Yu J et al (2018) Effect of elevated pCO2 on trace gas production during an ocean acidification mesocosm experiment. Biogeosciences 15:6649–6658CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Division of Environmental Science and EngineeringPohang University of Science and TechnologyPohangKorea
  2. 2.Ocean Research DivisionKorea Hydrographic and Oceanographic AgencyBusanKorea

Personalised recommendations