Advertisement

Multidecadal Variations of Sea Surface CO2 Fugacity (fCO2) in the Oyashio Current-Influenced Ocean Margin

  • Hongjie WangEmail author
  • Xinping Hu
Chapter
Part of the Atmosphere, Earth, Ocean & Space book series (AEONS)

Abstract

Oyashio Current-influenced northwestern North Pacific Ocean margin (the Oyashio Region, east of Japan) represents an important area for intermediate water mass formation, hence the transport of anthropogenic CO2 into the interior North Pacific. Currently, it is unclear how the air-sea CO2 fugacity gradient in the climatically sensitive Oyashio Region has been behaving in recent decades. Taking advantage of a community-based Surface Ocean CO2 Atlas (SOCAT, Version 5), we examined the sea surface fCO2 trends in 0.5° × 0.5° grids in the east Japanese margin (32.0°N–43.5°N, 140.0°E–147.0°E). In the Oyashio Region, seawater fCO2 increased significantly at a rate of 2.86 ± 0.92 µatm yr−1, greater than the atmospheric fCO2 increase rate (1.95 ± 0.03 µatm yr−1). Because of lower oceanic fCO2 values in this region compared with the atmosphere, the faster seawater fCO2 increase suggests that the Oyashio Region probably represents a decreasing CO2 sink in the past decades. Furthermore, the trend of the non-temperature controlled fCO2 change (3.22 ± 1.11 µatm yr−1) suggests that processes such as (1) enhanced respiration based on the increasing export of organic carbon from the neighboring Okhotsk Sea, and (2) reduced primary production in the Oyashio Region itself due to increased water column stratification, may have contributed to the faster surface fCO2 increase.

Keywords

Surface ocean CO2 fugacity (fCO2Anthropogenic CO2 Generalized additive mixed modeling Oyashio Current Ocean margin 

Notes

Acknowledgements

The authors were partially supported by an NSF grant (OCE#1654232) during the development of this manuscript. The SOCAT Version 5 Coastal databases used here was downloaded from https://www.socat.info/index.php/2017/06/19/v5-release/. The many researchers and funding agencies responsible for the collection of data and quality control are thanked for their contributions that made the SOCAT available. We also thank Larissa Dias for providing helpful editorial assistance, and Drs. Kitack Lee and Hon-Kit Lui for their helpful comments on an earlier draft of this manuscript.

References

  1. Bakker DCE, Pfeil B, Landa C, Metzl N, O’Brien KM, Olsen A, Smith K, Cosca C, Harasawa S, Jones SD, Nakaoka S, Nojiri Y, Schuster U, Steinhoff T, Tilbrook B, Wanninkhof R, Alin SR, Barbero L, Bates NR, Bianchi AA, Bonou F, Boutin J, Bozec Y, Burger E, Cai W-J, Castle RD, Chen L, Chierici M, Currie K, Evans W, Featherstone C, Feely RA, Fransson A, Greenwood N, Gregor L, Hankin S, Hardman-Mountford NJ, Harlay J, Hauck J, Hoppema M, Humphreys M, Hunt CW, Ibánhez JSP, Johannessen T, Keeling R, Kitidis V, Körtzinger A, Kozyr A, Krasakopolou E, Kuwata A, Landschϋtzer P, Lauvset SK, Lefèvre N, Lo Monaco C, Manke AB, Mathis JT, Merlivat L, Monteiro P, Munro D, Murata A, Newberger T, Omar AM, Ono T, Paterson K, Pierrot D, Robbins LL, Sabine CL, Saito S, Salisbury J, Schneider B, Schlitzer R, Schweitzer R, Sieger R, Skjelvan I, Sullivan KF, Sutherland SC, Sutton AJ, Sweeney C, Tadokoro K, Takahashi T, Telszewski M, Tuma M, Vandemark D, Van Heuven SMAC, Wada C, Ward B, Watson AJ, Xu S (2016) A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst Sci Data 8:383–413.  https://doi.org/10.5194/essd-6-69-2014CrossRefGoogle Scholar
  2. Brown ZW, Arrigo KR (2012) Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. ICES J Mar Sci 69(7):1180–1193.  https://doi.org/10.1093/icesjms/fss113CrossRefGoogle Scholar
  3. Chiba S, Ono T, Tadokoro K, Midorikawa T, Saino T (2004) Increased stratification and decreased lower trophic level productivity in the Oyashio Region of the North Pacific: a 30-year retrospective study. J Oceanogr 60(1):149–162.  https://doi.org/10.1023/B:JOCE.0000038324.14054.cfCrossRefGoogle Scholar
  4. Ducklow HW, Steinberg DK, Buesseler KO (2015) Upper ocean carbon export and the biological pump. Oceanography 14(4):50–58CrossRefGoogle Scholar
  5. Fassbender AJ, Sabine CL, Cronin MF, Sutton AJ (2017) Mixed-layer carbon cycling at the Kuroshio Extension Observatory. Glob Biogeochem Cycles 31(2):272–288.  https://doi.org/10.1002/2016GB005547CrossRefGoogle Scholar
  6. Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21.  https://doi.org/10.1080/00401706.1969.10490657CrossRefGoogle Scholar
  7. Hill KL, Weaver AJ, Freeland HJ, Bychkov A (2003) Evidence of change in the sea of okhotsk: Implications for the North Pacific. Atmos-Ocean 41(1):49–63.  https://doi.org/10.3137/ao.410104CrossRefGoogle Scholar
  8. Honjo S, Manganini SJ, Krishfield RA, Francois R (2008) Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Prog Oceanogr 76(3):217–285.  https://doi.org/10.1016/j.pocean.2007.11.003CrossRefGoogle Scholar
  9. Huthnance JM, Aken HMV, White M, Barton ED, Cann BL, Coelho EF, Fanjul EA, Miller P, Vitorino J (2002) Ocean margin exchange—water flux estimates. J Mar Sys 32:107–137CrossRefGoogle Scholar
  10. Ishii M, Kosugi N, Sasano D, Saito S, Midorikawa T, Inoue HY (2011) Ocean acidification off the south coast of Japan: a result from time series observations of CO2 parameters from 1994 to 2008. J Geophys Res 116(C6):C06022.  https://doi.org/10.1029/2010jc006831CrossRefGoogle Scholar
  11. Itoh S, Yasuda I (2010) Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension Region detected from the distribution of the sea surface height anomaly. J Phys Oceanogr 40(5):1018–1034.  https://doi.org/10.1175/2009jpo4265.1CrossRefGoogle Scholar
  12. Kanna N, Toyota T, Nishioka J (2014) Iron and macro-nutrient concentrations in sea ice and their impact on the nutritional status of surface waters in the southern Okhotsk Sea. Prog Oceanogr 126:44–57.  https://doi.org/10.1016/j.pocean.2014.04.012CrossRefGoogle Scholar
  13. Kim I-N, Lee K, Gruber N, Karl DM, Bullister JL, Yang S, Kim T-W (2014) Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346(6213):1102–1106.  https://doi.org/10.1126/science.1258396CrossRefGoogle Scholar
  14. Kim T-W, Lee K, Najjar RG, Jeong H-D, Jeong HJ (2011) Increasing N abundance in the Northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science 334(6055):505–509.  https://doi.org/10.1126/science.1206583CrossRefGoogle Scholar
  15. Kono T (1997) Modification of the Oyashio Water in the Hokkaido and Tohoku areas. Deep-Sea Res Part I 44(4):669–688.  https://doi.org/10.1016/S0967-0637(96)00108-2CrossRefGoogle Scholar
  16. Kusakabe M, Andreev A, Lobanov V, Zhabin I, Kumamoto Y, Murata A (2002) Effects of the anticyclonic eddies on water masses, chemical parameters and chlorophyll distributions in the Oyashio Current Region. J Oceanogr 58(5):691–701.  https://doi.org/10.1023/a:1022846407495CrossRefGoogle Scholar
  17. Landschützer P, Gruber N, Haumann FA, Rödenbeck C, Bakker DCE, van Heuven S, Hoppema M, Metzl N, Sweeney C, Takahashi T, Tilbrook B, Wanninkhof R (2015) The reinvigoration of the Southern Ocean carbon sink. Science 349(6253):1221–1224.  https://doi.org/10.1126/science.aab2620CrossRefGoogle Scholar
  18. Laruelle GG, Cai W-J, Hu X, Gruber N, Mackenzie FT, Regnier P (2018) Continental shelves as a variable but increasing global sink for atmospheric carbon dioxide. Nat Commun 9(1):454.  https://doi.org/10.1038/s41467-017-02738-zCrossRefGoogle Scholar
  19. Lenton A, Metzl N, Takahashi T, Kuchinke M, Matear RJ, Roy T, Sutherland SC, Sweeney C, Tilbrook B (2012) The observed evolution of oceanic pCO2 and its drivers over the last two decades. Glob Biogeochem Cycles 26(2):GB2021.  https://doi.org/10.1029/2011gb004095
  20. Liu K-K, Atkinson L, Quiñones R, Talaue-McManus L (2010) Biogeochemistry of continental margins in a global context. In: Liu K-K, Atkinson L, Quiñones R, Talaue-McManus L (eds) Carbon and nutrient fluxes in continental margins: a global synthesis. Springer, p 500Google Scholar
  21. Longhurst AR, Glen Harrison W (1989) The biological pump: profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22(1):47–123.  https://doi.org/10.1016/0079-6611(89)90010-4CrossRefGoogle Scholar
  22. Masujima M, Yasuda I, Hiroe Y, Watanabe T (2003) Transport of Oyashio Water across the subarctic front into the mixed water region and formation of NPIW. J Oceanogr 59(6):855–869.  https://doi.org/10.1023/B:JOCE.0000009576.09079.f5CrossRefGoogle Scholar
  23. Matano RP, Palma ED (2008) On the upwelling of downwelling currents. J Phys Oceanogr 38(11):2482–2500.  https://doi.org/10.1175/2008jpo3783.1CrossRefGoogle Scholar
  24. McKinley GA, Fay AR, Lovenduski NS, Pilcher DJ (2017) Natural variability and anthropogenic trends in the ocean carbon sink. Annu Rev Mar Sci 9(1):125–150.  https://doi.org/10.1146/annurev-marine-010816-060529CrossRefGoogle Scholar
  25. McKinley GA, Fay AR, Takahashi T, Metzl N (2011) Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nat Geosci 4(9):606–610.  https://doi.org/10.1038/ngeo1193CrossRefGoogle Scholar
  26. Midorikawa T, Iwano S, Saito K, Takano H, Kamiya H, Ishii M, Inoue HY (2003) Seasonal changes in oceanic pCO2 in the Oyashio region from winter to spring. J Oceanogr 59(6):871–882CrossRefGoogle Scholar
  27. Nakatsuka T, Toda M, Kawamura K, Wakatsuchi M (2004) Dissolved and particulate organic carbon in the Sea of Okhotsk: transport from continental shelf to ocean interior. J Geophys Res-Oceans 109(C9).  https://doi.org/10.1029/2003jc001909
  28. Nosaka Y, Yamashita Y, Suzuki K (2017) Dynamics and origin of transparent exopolymer particles in the Oyashio region of the western subarctic Pacific during the spring diatom bloom. Front Mar Sci 4(79).  https://doi.org/10.3389/fmars.2017.00079
  29. Ohshima KI, Nakanowatari T, Riser S, Volkov Y, Wakatsuchi M (2014) Freshening and dense shelf water reduction in the Okhotsk Sea linked with sea ice decline. Prog Oceanogr 126:71–79.  https://doi.org/10.1016/j.pocean.2014.04.020CrossRefGoogle Scholar
  30. Ono T, Sasaki K, Yasuda I (2003) Re-Estimation of annual anthropogenic carbon input from Oyashio into North Pacific Intermediate Water. J Oceanogr 59(6):883–891.  https://doi.org/10.1023/B:JOCE.0000009578.19174.d4CrossRefGoogle Scholar
  31. Ono T, Watanabe YW, Sasaki K (2000) Annual anthropogenic carbon transport into the North Pacific intermediate water through the Kuroshio/Oyashio Interfrontal Zone: an estimation from CFCs distribution. J Oceanogr 56(6):675–689.  https://doi.org/10.1023/a:1011177717139CrossRefGoogle Scholar
  32. Pfeil B, Olsen A, Bakker DCE, Hankin S, Koyuk H, Kozyr A, Malczyk J, Manke A, Metzl N, Sabine CL, Akl J, Alin SR, Bates N, Bellerby RGJ, Borges A, Boutin J, Brown PJ, Cai WJ, Chavez FP, Chen A, Cosca C, Fassbender AJ, Feely RA, González-Dávila M, Goyet C, Hales B, Hardman-Mountford N, Heinze C, Hood M, Hoppema M, Hunt CW, Hydes D, Ishii M, Johannessen T, Jones SD, Key RM, Körtzinger A, Landschützer P, Lauvset SK, Lefèvre N, Lenton A, Lourantou A, Merlivat L, Midorikawa T, Mintrop L, Miyazaki C, Murata A, Nakadate A, Nakano Y, Nakaoka S, Nojiri Y, Omar AM, Padin XA, Park GH, Paterson K, Perez FF, Pierrot D, Poisson A, Ríos AF, Santana-Casiano JM, Salisbury J, Sarma VVSS, Schlitzer R, Schneider B, Schuster U, Sieger R, Skjelvan I, Steinhoff T, Suzuki T, Takahashi T, Tedesco K, Telszewski M, Thomas H, Tilbrook B, Tjiputra J, Vandemark D, Veness T, Wanninkhof R, Watson AJ, Weiss R, Wong CS, Yoshikawa-Inoue H (2013) A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth Syst Sci Data 5(1):125–143.  https://doi.org/10.5194/essd-5-125-2013CrossRefGoogle Scholar
  33. Qiu B (2001) Kuroshio and Oyashio currents. In: Steele J, Thorpe S, Turekian K (eds) Ocean currents: a derivative of the encyclopedia of ocean sciences. Academic Press, pp 61–72.  https://doi.org/10.1038/s41558-018-0263-1
  34. Qiu B, Chen S, Schneider N (2017) Dynamical links between the decadal variability of the Oyashio and Kuroshio Extensions. J Climate 30(23):9591–9605.  https://doi.org/10.1175/jcli-d-17-0397.1CrossRefGoogle Scholar
  35. Rogachev K, Tishchenko PY, Pavlova G, Bychkov A, Carmack EC, Wong CS, Yuraso GI (1996) The influence of fresh-core rings on chemical concentrations (CO2, PO4, O2, alkalinity, and pH) in the western subarctic Pacific Ocean. J Geophys Res-Oceans 101(C1):999–1010.  https://doi.org/10.1029/95JC02924CrossRefGoogle Scholar
  36. Rost B, Riebesell U (2004) Coccolithophores and the biological pump: responses to environmental changes. In: Thierstein HR, Young JR (eds) Coccolithophores: from molecular processes to global impact. Springer, Berlin, pp 99–125.  https://doi.org/10.1007/978-3-662-06278-4_5
  37. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):367–371CrossRefGoogle Scholar
  38. Saito H, Tsuda A, Kasai H (2002) Nutrient and plankton dynamics in the Oyashio region of the western subarctic Pacific Ocean. Deep-Sea Res Part II 49(24):5463–5486.  https://doi.org/10.1016/S0967-0645(02)00204-7CrossRefGoogle Scholar
  39. Sakurai Y (2007) An overview of the Oyashio ecosystem. Deep-Sea Res Part II 54(23):2526–2542.  https://doi.org/10.1016/j.dsr2.2007.02.007CrossRefGoogle Scholar
  40. Sarmiento JL, Gruber N (2006) Ocean biogeochemical dynamics. Princeton University Press, PrincetonCrossRefGoogle Scholar
  41. Sasano D, Takatani Y, Kosugi N, Nakano T, Midorikawa T, Ishii M (2018) Decline and bidecadal oscillations of dissolved oxygen in the Oyashio region and their propagation to the western North Pacific. Glob Biogeochem Cycles 32(6):909–931.  https://doi.org/10.1029/2017GB005876CrossRefGoogle Scholar
  42. Seki O, Yoshikawa C, Nakatsuka T, Kawamura K, Wakatsuchi M (2006) Fluxes, source and transport of organic matter in the western Sea of Okhotsk: stable carbon isotopic ratios of n-alkanes and total organic carbon. Deep-Sea Res Part I 53(2):253–270.  https://doi.org/10.1016/j.dsr.2005.11.004CrossRefGoogle Scholar
  43. Shimizu Y, Yasuda I, Ito S-I (2001) Distribution and circulation of the coastal Oyashio intrusion. J Phys Oceanogr 31(6):1561–1578.  https://doi.org/10.1175/1520-0485(2001)031%3c1561:Dacotc%3e2.0.Co;2CrossRefGoogle Scholar
  44. Sugimoto S, Hanawa K (2011) Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio-Oyashio Confluence Region: influences of warm eddies detached from the Kuroshio Extension. J Clim 24(24):6551–6561.  https://doi.org/10.1175/2011jcli4023.1CrossRefGoogle Scholar
  45. Sutton AJ, Feely RA, Maenner-Jones S, Musielwicz S, Osborne J, Dietrich C, Monacci N, Cross J, Bott R, Kozyr A (2018) Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends. Earth Syst Sci Data Discuss 2018:1–23.  https://doi.org/10.5194/essd-2018-77CrossRefGoogle Scholar
  46. Tadokoro K, Chiba S, Ono T, Midorikawa T, Saino T (2005) Interannual variation in Neocalanus biomass in the Oyashio waters of the western North Pacific. Fish Oceanogr 14(3):210–222.  https://doi.org/10.1111/j.1365-2419.2005.00333.xCrossRefGoogle Scholar
  47. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res Part II 49(9–10):1601–1622.  https://doi.org/10.1016/s0967-0645(02)00003-6CrossRefGoogle Scholar
  48. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DCE, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong CS, Delille B, Bates NR, de Baar HJW (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res Part II 56(8–10):554–577CrossRefGoogle Scholar
  49. Wang H, Hu X, Cai W-J, Sterba-Boatwright B (2017) Decadal fCO2 trends in global ocean margins and adjacent boundary current-influenced areas. Geophys Res Lett 44(17):8962–8970.  https://doi.org/10.1002/2017GL074724CrossRefGoogle Scholar
  50. Wang H, Hu X, Sterba-Boatwright B (2016) A new statistical approach for interpreting oceanic fCO2 record. Mar Chem 183:41–49CrossRefGoogle Scholar
  51. Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr-Meth 12(6):351–362.  https://doi.org/10.4319/lom.2014.12.351CrossRefGoogle Scholar
  52. Wanninkhof R, McGillis WR (1999) A cubic relationship between air-sea CO2 exchange and wind speed. Geophys Res Lett 26(13):1889–1892.  https://doi.org/10.1029/1999GL900363CrossRefGoogle Scholar
  53. Wanninkhof R, Park GH, Takahashi T, Sweeney C, Feely R, Nojiri Y, Gruber N, Doney SC, McKinley GA, Lenton A, Le Quéré C, Heinze C, Schwinger J, Graven H, Khatiwala S (2013) Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences 10(3):1983–2000.  https://doi.org/10.5194/bg-10-1983-2013CrossRefGoogle Scholar
  54. Watanabe YW, Nishioka J, Nakatsuka T (2013) Decadal time evolution of oceanic uptake of anthropogenic carbon in the Okhotsk Sea. Geophys Res Lett 40(2):322–326.  https://doi.org/10.1002/grl.50113CrossRefGoogle Scholar
  55. Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar Chem 2(3):203–215.  https://doi.org/10.1016/0304-4203(74)90015-2CrossRefGoogle Scholar
  56. Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8(4):347–359CrossRefGoogle Scholar
  57. Wu L, Cai W, Zhang L, Nakamura H, Timmermann A, Joyce T, McPhaden MJ, Alexander M, Qiu B, Visbeck M, Chang P, Giese B (2012) Enhanced warming over the global subtropical western boundary currents. Nat Clim Change 2:161.  https://doi.org/10.1038/nclimate1353CrossRefGoogle Scholar
  58. Yang H, Lohmann G, Wei W, Dima M, Ionita M, Liu J (2016) Intensification and poleward shift of subtropical western boundary currents in a warming climate. J Geophys Res-Oceans 121(7):4928–4945.  https://doi.org/10.1002/2015JC011513CrossRefGoogle Scholar
  59. Yasuda I (2003) Hydrographic structure and variability in the Kuroshio-Oyashio transition area. J Oceanogr 59(4):389–402.  https://doi.org/10.1023/a:1025580313836CrossRefGoogle Scholar
  60. Yasuda I, Kouketsu S, Katsumata K, Ohiwa M, Kawasaki Y, Kusaka A (2002) Influence of Okhotsk Sea intermediate water on the Oyashio and North Pacific intermediate water. J Geophys Res-Oceans 107(C12):30-31–30-11.  https://doi.org/10.1029/2001jc001037
  61. Yatsu A, Chiba S, Yamanaka Y, Ito S, Shimizu Y, Kaeriyama M, Watanabe Y (2013) Climate forcing and the Kuroshio/Oyashio ecosystem. ICES J Mar Sci 70(5):922–933.  https://doi.org/10.1093/icesjms/fst084CrossRefGoogle Scholar
  62. Zappa CJ, McGillis WR, Raymond PA, Edson JB, Hintsa EJ, Zemmelink HJ, Dacey JWH, Ho DT (2007) Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems. Geophys Res Lett 34(10).  https://doi.org/10.1029/2006gl028790
  63. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes, vol 65. Elsevier Oceanography Series. Elsevier, AmsterdamGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Physical and Environmental SciencesTexas A&M University-Corpus ChristiCorpus ChristiUSA
  2. 2.Joint Institute for the Study of the Atmosphere and OceanUniversity of WashingtonSeattleUSA

Personalised recommendations