A Clear View on Design of Low-Noise Amplifiers Using CMOS Technology

  • Lalitha SowmyaEmail author
  • S. Khadar Bhasha
  • Durgesh Nandan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1162)


A detailed explanation on the design of low-noise amplifier is given in this paper. The wideband low-noise amplifiers are implemented in 0.18 µm CMOS technology. The various designs of low-noise amplifiers, such as the LNAs which reduce power dissipation, occupy less area, and consume less power, are presented in view of this paper. A low-noise amplifier design employs different methods, such as using center-tapped inductors, by interconnecting the stages, which are explained in this paper.


Mutual coupling Low-noise amplifier Noise canceling Inter-stage inductors Frequency widening network 


  1. 1.
    Yazdi, A., Lin, D., Heydari, P.: A 1.8 V three-stage 25 GHz 3 dB-BW differential non-uniform downsized distributed amplifier. IEEE ISSCC Technical Digest, pp. 156–158 (2005)Google Scholar
  2. 2.
    Liao, C.-F., Liu, S.-I.: A broadband noise-canceling CMOS LNA for3.1–10.6 GHz UWB receivers. IEEE J. Solid State Circ. 42(2), 329–339 (2007)CrossRefGoogle Scholar
  3. 3.
    Meaamar, A., Chye, B.C., Seng, Y.K.: A 3–8 GHz low-noise CMOS amplifier. IEEE Microwave Wirel. Compon. Lett. 19(4) (2009)Google Scholar
  4. 4.
    Liao. C.F., Liu, S.I.: A broadband noise-canceling CMOS LNA for 3.1–10.6 GHz UWB receiver. In: IEEE Custom Integrated Circuits Conference, National Taiwan University, Taipei, Taiwan (2012)Google Scholar
  5. 5.
    Ellinger, F., Wickert, M., Eickhoff, R., Mayer U., Hauptmann, S.: Low noise radio frequency integrated circuits in 90 nm SOI CMOS up to 60 GHz. In: Chair for Circuit Design and Network Theory, 01–10 (2010)Google Scholar
  6. 6.
    Mohan, S.S., Hershenson, M.D., Boyd, S.P., Lee, T.H.: Bandwidth extension in CMOS with optimized on-chip inductors. IEEE j. Solid State circ. 35(3) (2000)Google Scholar
  7. 7.
    Ismail, A., Abidi, A.A.: A 3–10 GHz low-noise Amplifier with wideband LC-ladder matching network. IEEE j. Solid State Circ. 39(12) (2004)Google Scholar
  8. 8.
    Wei, C.C., Chiu, H.C., Feng, W.S.: An ultra-wideband CMOS VCO with 3–5 GHz tuning range. In: IEEE International Workshop on Radio-Frequency Integration Technology, pp. 05–10 (2005)Google Scholar
  9. 9.
    Lee, H., Mohammadi, S.: A subthreshold low phase noise CMOS LC VCO for ultra low power applications. IEEE Microwave Wirel. Compon. Lett. 17(11) (2007)Google Scholar
  10. 10.
    Uhrmann, H., Zimmermann, H.: Alow-noise current preamplifier in 120 nm CMOS technology. In: Mixdes 2007 Ciechocinek, Poland, pp. 21–23 (2007)Google Scholar
  11. 11.
    Balemarthy, D.: A 1.8/2.4 GHz dual-band CMOS low noise amplifier using miller capacitance tuning. Indian Institute of Technology, Guwahati, India (2008)Google Scholar
  12. 12.
    Meaamar, A.: A 3–8 GHz low-noise CMOS Amplifier. IEEE Microwave Wirel. Compon. Lett. 19(4) (2009)Google Scholar
  13. 13.
    Rashid, S.M.S., Ali, S.N.: A 36.1 GHz single stage low noise amplifier using 0.13 µm CMOS process. In: 2009 World Congress on Computer Science and Information Engineering (2008). ISBN: 978-0-7695-3507-4/08Google Scholar
  14. 14.
    Ximenes, A.R.: A wideband noise canceling low-noise amplifier for 50 MHz–5 GHz wireless receivers in CMOS technology (2011). ISBN: 978-1-61284Google Scholar
  15. 15.
    Lim, W.Y., Shi, J., Arasu, M.A., Je ,M.: Geometric scalable 2-port center-tap inductor modeling (2012)Google Scholar
  16. 16.
    Yang, T.: An Ultra-low-power low-noise CMOS bio-potential amplifier for neural recording (2005).
  17. 17.
    Liao, W.-R.: A 0.5–3.5 GHz wideband CMOS LNA for LTE application (2016). ISBN: 978-1-5090-1978-6/16Google Scholar
  18. 18.
    Mazhabjafari, B., Yavari, M.: A 2.6–13.7 GHz highly linear CMOS low noise amplifier for UWB applications. In: The 22nd Iranian Conference on Electrical Engineering (ICEE 2014), 20–22 May, Shahid Beheshti University (2014)Google Scholar
  19. 19.
    Zhang, H., Fan, X., Sánchez-Sinencio, E.: A low-power, linearized, ultra-wideband LNA design technique. IEEE J. Solid State Circ. 44(2), 320–330 (2009)CrossRefGoogle Scholar
  20. 20.
    Mehrjoo, M.S., Yavari, M.: A low power UWB very low noise amplifier using an improved noise reduction technique. In: IEEE IEEE International Symposium of Circuits and Systems, pp. 277–280 (2011)Google Scholar
  21. 21.
    Khanapurkar, M.M.: Design of ultra wideband low noise amplifier with the negative feedback using micro strip line matching structure for multiple band application and its Simulation based performance analysis (2016)Google Scholar
  22. 22.
    Singh, V.: Ultra wide band low noise amplifier with self-bias for improved gain and reduced power dissipation (2016). ISBN: 978-1-5090-1666Google Scholar
  23. 23.
    Salama, M., Soliman, A.M.: Low-voltage low-power CMOS RF low noise amplifier. Int. J. Electron. Commun. (AEÜ) 63(6), 478–482 (2009)CrossRefGoogle Scholar
  24. 24.
    Khosravi, H., Zandian, S., Bijari, A.: A low power, high gain 2.4/5.2 GHz concurrent dual-band low noise amplifier (2019)Google Scholar
  25. 25.
    Liu, R., Lin, C., Deng, K., Wang, H.: A 0.5–14 GHz 10.6 dB CMOS cascode distributed amplifier. Symp. VLSI Circ. Dig. 17, 139–140 (2003)Google Scholar
  26. 26.
    Liu, R.-C., Deng, K.-L., Wang, H.: A 0.6–22 GHz broadband CMOS distributed amplifier. In: IEEE Radio Frequency Integrated Circuits Digest of Technical Papers, pp. 103–106 (2003)Google Scholar
  27. 27.
    Bevilacqua, A., Niknejad, A.: An ultrawideband CMOS low-noise amplifier for 3.1–10.6 GHz wireless receivers. IEEE J. Solid State Circ. 39(12), 2259–2268 (2004)CrossRefGoogle Scholar
  28. 28.
    Bevilacqua, A., Niknejad, A.M.: An ultra-wideband CMOS LNA for 3.1–10.6 GHz wireless receivers. IEEE Int. Solid State Circ. Conf. XVII, 382–383 (2004)Google Scholar
  29. 29.
    Kim, C.-W., Kang, M.-S., Anh, P.T., Kim, H.-T., Lee, S.-G.: An Ultra-wideband CMOS low noise amplifier for 3–5 GHz UWB system. IEEE J. Solid State Circ. 40, 544–547 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  • Lalitha Sowmya
    • 1
    Email author
  • S. Khadar Bhasha
    • 1
  • Durgesh Nandan
    • 2
  1. 1.Department of ECEAditya Engineering CollegeSurampalem, East GodavariIndia
  2. 2.Accendere Knowledge Management Services Pvt. Ltd., CL Educate Ltd.New DelhiIndia

Personalised recommendations