Advertisement

High-Performance Gas Sensors Based on Nanostructured Metal Oxide Heterojunctions

  • Shulin YangEmail author
  • Zhao Wang
  • Gui Lei
  • Huoxi Xu
  • Yongming Hu
  • Haoshuang Gu
Chapter
  • 56 Downloads
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

Nanostructured metal oxide heterojunctions have been successfully assembled to be gas sensors with high sensor responses and fast response/recovery speeds, which was attributed to their advantages of the high specific surface areas and the adjustable highness of the potential barriers. A number of strategies have been used to assemble the nanostructured heterojunctions in the sensing materials, such as mixing the sensing nanopowders, preparing the multilayer films, synthesizing the core-shell or the decorated nanomaterials, and so on. The gas sensors based on the designed heterojunctions with the n–n, n–p, p–n, p–p, n–p–n, or p–n–p structures have been widely studied to improve their sensing performances to the typical reducing/oxidizing gases, which was confirmed by the researches on the most-studied materials including ZnO, SnO2, TiO2, WO3, In2O3, Fe2O3, MoO3, Co3O4, and CuO. Their enhanced mechanisms in the gas-sensing performances were mainly attributed to the essential improvement in the modification of band structures at the nanojunctions composed of the studied metal oxides. According to the overview of recent developments, the challenges and outlooks of the gas sensors based on the heterojunctions were also discussed. Our review further indicated that the materials based on the metal oxide heterostructures could be the promising candidates to exhibit outstanding gas-sensing performances.

Keywords

Nanostructure Metal oxide Heterojunction Gas sensor Sensing mechanism Challenges and outlooks 

Notes

Acknowledgements

Shulin Yang and Zhao Wang contributed equally to this work. This work was financially supported by the National Natural Science Foundation of China (Grant no. 51802109 and 51972102), the Science and Technology Research Project for Young Professionals of Education Department of Hubei Province (Grant no. Q20182903) and the ChuTian Scholars Program of Hubei Province.

References

  1. 1.
    Sun G, Chen H, Li Y, Ma G, Zhang S, Jia T, Cao J, Wang X, Bala H, Zhang Z (2016) Synthesis and triethylamine sensing properties of mesoporous α-Fe2O3 microrods. Mater Lett 178:213–216.  https://doi.org/10.1016/j.matlet.2016.04.209CrossRefGoogle Scholar
  2. 2.
    Zeng J, Hu M, Wang W, Chen H, Qin Y (2012) NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens Actuator B-Chem 161(1):447–452.  https://doi.org/10.1016/j.snb.2011.10.059CrossRefGoogle Scholar
  3. 3.
    Liu L, Zhao Y, Song P, Yang Z, Wang Q (2019) ppb level triethylamine detection of yolk-shell SnO2/Au/Fe2O3 nanoboxes at low-temperature. Appl Surf Sci 476:391–401.  https://doi.org/10.1016/j.apsusc.2019.01.110CrossRefGoogle Scholar
  4. 4.
    Xing R, Xu L, Song J, Zhou C, Li Q, Liu D, Wei Song H (2015) Preparation and gas sensing properties of In2O3/Au nanorods for detection of volatile organic compounds in exhaled breath. Sci Rep 5:10717.  https://doi.org/10.1038/srep10717CrossRefGoogle Scholar
  5. 5.
    Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10(3):2088–2106CrossRefGoogle Scholar
  6. 6.
    Dey A (2018) Semiconductor metal oxide gas sensors: a review. Mater Mater Sci Eng B-Adv Funct Solid-State Mater 229:06–217.  https://doi.org/10.1016/j.mseb.2017.12.036
  7. 7.
    Barzegar Gerdroodbary M, Ganji DD, Shiryanpour I, Moradi R (2018) Mass analysis of CH4/SO2 gas mixture by low-pressure MEMS gas sensor. J Nat Gas Sci Eng 53:317–328.  https://doi.org/10.1016/j.jngse.2018.03.002CrossRefGoogle Scholar
  8. 8.
    Yang S, Wang Z, Hu Y, Cai Y, Huang R, Li X, Huang Z, Lan Z, Chen W, Gu H (2018) Defect-original room-temperature hydrogen sensing of MoO3 nanoribbon: experimental and theoretical studies. Sens Actuator B-Chem 260:21–32.  https://doi.org/10.1016/j.snb.2017.12.166CrossRefGoogle Scholar
  9. 9.
    Hosseini ZS, Zad AI, Mortezaali A (2015) Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures. Sens Actuator B-Chem 207:865–871.  https://doi.org/10.1016/j.snb.2014.10.085
  10. 10.
    Vetter S, Haffer S, Wagner T, Tiemann M (2015) Nanostructured Co3O4 as a CO gas sensor: temperature-dependent behavior. Sens Actuator B-Chem 206:133–138.  https://doi.org/10.1016/j.snb.2014.09.025CrossRefGoogle Scholar
  11. 11.
    Abbasi A, Jahanbin Sardroodi J (2016) Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations. Comput Theor Chem 1095:15–28.  https://doi.org/10.1016/j.comptc.2016.09.011CrossRefGoogle Scholar
  12. 12.
    Shendage SS, Patil VL, Vanalakar SA, Patil SP, Harale NS, Bhosale JL, Kim JH, Patil PS (2017) Sensitive and selective NO2 gas sensor based on WO3 nanoplates. Sens Actuator B-Chem 240:426–433.  https://doi.org/10.1016/j.snb.2016.08.177CrossRefGoogle Scholar
  13. 13.
    Shingange K, Tshabalala ZP, Ntwaeaborwa OM, Motaung DE, Mhlongo GH (2016) Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J Colloid Interface Sci 479:127–138.  https://doi.org/10.1016/j.jcis.2016.06.046CrossRefGoogle Scholar
  14. 14.
    Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON Jr, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Chim Acta 185(4):213.  https://doi.org/10.1007/s00604-018-2750-5CrossRefGoogle Scholar
  15. 15.
    Sberveglieri G (1995) Recent developments in semiconducting thin-film gas sensors. Sens Actuator B-Chem 23(2):103–109.  https://doi.org/10.1016/0925-4005(94)01278-PCrossRefGoogle Scholar
  16. 16.
    Saito S, Miyayama M, Koumoto K, Yanagida H (1985) Gas sensing characteristics of porous ZnO and Pt/ZnO ceramics. J Am Ceram Soc 68(1):40–43.  https://doi.org/10.1111/j.1151-2916.1985.tb15248.xCrossRefGoogle Scholar
  17. 17.
    Chang JF, Kuo HH, Leu IC, Hon MH (2002) The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens Actuator B-Chem 84(2):258–264.  https://doi.org/10.1016/S0925-4005(02)00034-5CrossRefGoogle Scholar
  18. 18.
    Lee D-S, Han S-D, Huh J-S, Lee D-D (1999) Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor. Sens Actuator B-Chem 60(1):57–63.  https://doi.org/10.1016/S0925-4005(99)00244-0CrossRefGoogle Scholar
  19. 19.
    Chatterjee AP, Mitra P, Mukhopadhyay AK (1999) Chemically deposited zinc oxide thin film gas sensor. J Mater Sci 34:4225.  https://doi.org/10.1023/A:1004694501646CrossRefGoogle Scholar
  20. 20.
    Yuan Z-Y, Su B-L (2004) Titanium oxide nanotubes, nanofibers and nanowires. Colloid Surf A-Physicochem Eng Asp 241(1):173–183.  https://doi.org/10.1016/j.colsurfa.2004.04.030CrossRefGoogle Scholar
  21. 21.
    Tana, Zhang M, Li J, Li H, Li Y, Shen W (2009) Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles. Catal Today 148(1):179–183.  https://doi.org/10.1016/j.cattod.2009.02.016
  22. 22.
    Hoa ND, El-Safty SA (2011) Synthesis of mesoporous NiO nanosheets for the detection of toxic NO2 gas. Chem-Eur J 17(46):12896–12901.  https://doi.org/10.1002/chem.201101122CrossRefGoogle Scholar
  23. 23.
    Motaung DE, Mhlongo GH, Makgwane PR, Dhonge BP, Cummings FR, Swart HC, Ray SS (2018) Ultra-high sensitive and selective H2 gas sensor manifested by interface of n–n heterostructure of CeO2-SnO2 nanoparticles. Sens Actuator B-Chem 254:984–995.  https://doi.org/10.1016/j.snb.2017.07.093CrossRefGoogle Scholar
  24. 24.
    Yu H, Yang T, Wang Z, Li Z, Zhao Q, Zhang M (2018) p-N heterostructural sensor with SnO-SnO2 for fast NO2 sensing response properties at room temperature. Sens Actuator B-Chem 258:517–526.  https://doi.org/10.1016/j.snb.2017.11.165CrossRefGoogle Scholar
  25. 25.
    Wang S, Kang Y, Wang L, Zhang H, Wang Y, Wang Y (2013) Organic/inorganic hybrid sensors: a review. Sens Actuator B-Chem 182:467–481.  https://doi.org/10.1016/j.snb.2013.03.042CrossRefGoogle Scholar
  26. 26.
    Xu K, Fu C, Gao Z, Wei F, Ying Y, Xu C, Fu G (2017) Nanomaterial-based gas sensors: a review. Instrum Sci Technol 46(2):115–145.  https://doi.org/10.1080/10739149.2017.1340896CrossRefGoogle Scholar
  27. 27.
    Andre RS, Sanfelice RC, Pavinatto A, Mattoso LHC, Correa DS (2018) Hybrid nanomaterials designed for volatile organic compounds sensors: a review. Mater Des 156:154–166.  https://doi.org/10.1016/j.matdes.2018.06.041CrossRefGoogle Scholar
  28. 28.
    Wang Q, Kou X, Liu C, Zhao L, Lin T, Liu F, Yang X, Lin J, Lu G (2018) Hydrothermal synthesis of hierarchical CoO/SnO2 nanostructures for ethanol gas sensor. J Colloid Interface Sci 513:760–766.  https://doi.org/10.1016/j.jcis.2017.11.073CrossRefGoogle Scholar
  29. 29.
    Shi S, Zhang F, Lin H, Wang Q, Shi E, Qu F (2018) Enhanced triethylamine-sensing properties of P-N heterojunction Co3O4/In2O3 hollow microtubes derived from metal–organic frameworks. Sens Actuator B-Chem 262:739–749.  https://doi.org/10.1016/j.snb.2018.01.246CrossRefGoogle Scholar
  30. 30.
    Mariammal RN, Ramachandran K (2018) Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Mater Res Bull 100:420–428.  https://doi.org/10.1016/j.materresbull.2017.12.046CrossRefGoogle Scholar
  31. 31.
    Wongrat E, Ponhan W, Choopun S (2017) Room temperature ethanol sensing properties of FET sensors based on ZnO nanostructures. Ceram Int 43:S520–S524.  https://doi.org/10.1016/j.ceramint.2017.05.268CrossRefGoogle Scholar
  32. 32.
    Gupta Chatterjee S, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuator B-Chem 221:1170–1181.  https://doi.org/10.1016/j.snb.2015.07.070CrossRefGoogle Scholar
  33. 33.
    Wang Z, Li Z, Sun J, Zhang H, Wang W, Zheng W, Wang C (2010) Improved hydrogen monitoring properties based on p-NiO/n-SnO2 heterojunction composite nanofibers. J Phys Chem C 114(13):6100–6105.  https://doi.org/10.1021/jp9100202CrossRefGoogle Scholar
  34. 34.
    Chen WG, Li QZ, Gan HL, Zeng W (2014) Study of CuO-SnO2 heterojunction nanostructures for enhanced CO gas sensing properties. Adv Appl Ceram 113(3):139–146.  https://doi.org/10.1179/1743676113Y.0000000128CrossRefGoogle Scholar
  35. 35.
    Huo L, Yang X, Liu Z, Tian X, Qi T, Wang X, Yu K, Sun J, Fan M (2017) Modulation of potential barrier heights in Co3O4/SnO2 heterojunctions for highly H2-selective sensors. Sens Actuator B-Chem 244:694–700.  https://doi.org/10.1016/j.snb.2017.01.061CrossRefGoogle Scholar
  36. 36.
    Zhao X, Ji H, Jia Q, Wang M (2015) A nanoscale Co3O4-WO3 p–n junction sensor with enhanced acetone responsivity. J Mater Sci-Mater Electron 26(10):8217–8223.  https://doi.org/10.1007/s10854-015-3484-3CrossRefGoogle Scholar
  37. 37.
    Kwon YJ, Na HG, Kang SY, Choi MS, Bang JH, Kim TW, Mirzaei A, Kim HW (2017) Attachment of Co3O4 layer to SnO2 nanowires for enhanced gas sensing properties. Sens Actuator B-Chem 239:180–192.  https://doi.org/10.1016/j.snb.2016.07.177CrossRefGoogle Scholar
  38. 38.
    Liu C, Zhao L, Wang B, Sun P, Wang Q, Gao Y, Liang X, Zhang T, Lu G (2017) Acetone gas sensor based on NiO/ZnO hollow spheres: fast response and recovery, and low (ppb) detection limit. J Colloid Interface Sci 495:207–215.  https://doi.org/10.1016/j.jcis.2017.01.106CrossRefGoogle Scholar
  39. 39.
    Annanouch FE, Haddi Z, Ling M, Di Maggio F, Vallejos S, Vilic T, Zhu Y, Shujah T, Umek P, Bittencourt C, Blackman C, Llobet E (2016) Aerosol-assisted CVD-grown PdO nanoparticle-decorated tungsten oxide nanoneedles extremely sensitive and selective to hydrogen. ACS Appl Mater Interfaces 8(16):10413–10421.  https://doi.org/10.1021/acsami.6b00773CrossRefGoogle Scholar
  40. 40.
    Li F, Gao X, Wang R, Zhang T, Lu G (2017) Study on TiO2-SnO2 core-shell heterostructure nanofibers with different work function and its application in gas sensor. Sens Actuator B-Chem 248:812–819.  https://doi.org/10.1016/j.snb.2016.12.009CrossRefGoogle Scholar
  41. 41.
    Xun H, Zhang Z, Yu A, Yi J (2018) Remarkably enhanced hydrogen sensing of highly-ordered SnO2-decorated TiO2 nanotubes. Sens Actuator B-Chem 273:983–990.  https://doi.org/10.1016/j.snb.2018.06.120CrossRefGoogle Scholar
  42. 42.
    Wang L, Li J, Wang Y, Yu K, Tang X, Zhang Y, Wang S, Wei C (2016) Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances. Sci Rep 6:35079.  https://doi.org/10.1038/srep35079CrossRefGoogle Scholar
  43. 43.
    Nguyen DD, Do DT, Vu XH, Dang DV, Nguyen DC (2016) ZnO nanoplates surfaced-decorated by WO3 nanorods for NH3 gas sensing application. Adv Nat SCI-Nanosci 7(1):015004.  https://doi.org/10.1088/2043-6262/7/1/015004CrossRefGoogle Scholar
  44. 44.
    Ma L, Fan H, Tian H, Fang J, Qian X (2016) The n-ZnO/n-In2O3 heterojunction formed by a surface-modification and their potential barrier-control in methanal gas sensing. Sens Actuator B-Chem 222:508–516.  https://doi.org/10.1016/j.snb.2015.08.085CrossRefGoogle Scholar
  45. 45.
    Deng J, Yu B, Lou Z, Wang L, Wang R, Zhang T (2013) Facile synthesis and enhanced ethanol sensing properties of the brush-like ZnO–TiO2 heterojunctions nanofibers. Sens Actuator B-Chem 184:21–26.  https://doi.org/10.1016/j.snb.2013.04.020CrossRefGoogle Scholar
  46. 46.
    Lou Z, Li F, Deng J, Wang L, Zhang T (2013) Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. ACS Appl Mater Interfaces 5(23):12310–12316.  https://doi.org/10.1021/am402532vCrossRefGoogle Scholar
  47. 47.
    Wei N, Cui H, Wang X, Xie X, Wang M, Zhang L, Tian J (2017) Hierarchical assembly of In2O3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: enhanced photocatalytic and gas-sensing properties. J Colloid Interface Sci 498:263–270.  https://doi.org/10.1016/j.jcis.2017.03.072CrossRefGoogle Scholar
  48. 48.
    Song X, Wang Z, Liu Y, Wang C, Li L (2009) A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers. Nanotechnology 20(7):075501.  https://doi.org/10.1088/0957-4484/20/7/075501CrossRefGoogle Scholar
  49. 49.
    Du H, Yao P, Sun Y, Wang J, Wang H, Yu N (2017) Electrospinning hetero-nanofibers In2O3/SnO2 of homotype heterojunction with high gas sensing activity. Sensors 17(8).  https://doi.org/10.3390/s17081822
  50. 50.
    Wang L, Gao J, Wu B, Kan K, Xu S, Xie Y, Li L, Shi K (2015) Designed synthesis of In2O3 beads@TiO2-In2O3 composite nanofibers for high performance NO2 sensor at room temperature. ACS Appl Mater Interfaces 7(49):27152–27159.  https://doi.org/10.1021/acsami.5b09496CrossRefGoogle Scholar
  51. 51.
    Zhao C, Zhang G, Han W, Fu J, He Y, Zhang Z, Xie E (2013) Electrospun In2O3/α-Fe2O3 heterostructure nanotubes for highly sensitive gas sensor applications. CrystEngComm 15(33):6491.  https://doi.org/10.1039/c3ce40962gCrossRefGoogle Scholar
  52. 52.
    Giebelhaus I, Varechkina E, Fischer T, Rumyantseva M, Ivanov V, Gaskov A, Morante JR, Arbiol J, Tyrra W, Mathur S (2013) One-dimensional CuO-SnO2 p-n heterojunctions for enhanced detection of H2S. J Mater Chem A 1(37):11261.  https://doi.org/10.1039/c3ta11867cCrossRefGoogle Scholar
  53. 53.
    Li X, Li X, Chen N, Li X, Zhang J, Yu J, Wang J, Tang Z (2014) CuO-In2O3 core-shell nanowire based chemical gas sensors. J Nanomater 2014:1–7.  https://doi.org/10.1155/2014/973156CrossRefGoogle Scholar
  54. 54.
    Kim J-H, Lee J-H, Mirzaei A, Kim HW, Kim SS (2017) Optimization and gas sensing mechanism of n-SnO2-p-Co3O4 composite nanofibers. Sens Actuator B-Chem 248:500–511.  https://doi.org/10.1016/j.snb.2017.04.029CrossRefGoogle Scholar
  55. 55.
    Park S, Kheel H, Sun G-J, Ko T, Lee WI, Lee C (2015) Acetone gas sensing properties of a multiple-networked Fe2O3-functionalized CuO nanorod sensor. J Nanomater 2015:1–6.  https://doi.org/10.1155/2015/830127CrossRefGoogle Scholar
  56. 56.
    Park S, Cai Z, Lee J, Yoon JI, Chang S-P (2016) Fabrication of a low-concentration H2S gas sensor using CuO nanorods decorated with Fe2O3 nanoparticles. Mater Lett 181:231–235.  https://doi.org/10.1016/j.matlet.2016.06.043
  57. 57.
    Kheel H, Sun G-J, Lee JK, Mirzaei A, Choi S, Lee C (2017) Hydrogen gas detection of Nb2O5 nanoparticle-decorated CuO nanorod sensors. Met Mater-Int 23(1):214–219.  https://doi.org/10.1007/s12540-017-6343-3CrossRefGoogle Scholar
  58. 58.
    Wang C, Cheng X, Zhou X, Sun P, Hu X, Shimanoe K, Lu G, Yamazoe N (2014) Hierarchical alpha-Fe2O3/NiO composites with a hollow structure for a gas sensor. ACS Appl Mater Interfaces 6(15):12031–12037.  https://doi.org/10.1021/am501063zCrossRefGoogle Scholar
  59. 59.
    Zhang L, Gao Z, Liu C, Zhang Y, Tu Z, Yang X, Yang F, Wen Z, Zhu L, Liu R, Li Y, Cui L (2015) Synthesis of TiO2 decorated Co3O4 acicular nanowire arrays and their application as an ethanol sensor. J Mater Chem A 3(6):2794–2801.  https://doi.org/10.1039/c4ta06440bCrossRefGoogle Scholar
  60. 60.
    Meng F-N, Di X-P, Dong H-W, Zhang Y, Zhu C-L, Li C, Chen Y-J (2013) Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature. Sens Actuator B-Chem 182:197–204.  https://doi.org/10.1016/j.snb.2013.02.112CrossRefGoogle Scholar
  61. 61.
    Park S, Kim S, Sun G-J, In Lee W, Kim KK, Lee C (2014) Fabrication and NO2 gas sensing performance of TeO2-core/CuO-shell heterostructure nanorod sensors. Nanoscale Res Lett 9(1):638.  https://doi.org/10.1186/1556-276x-9-638CrossRefGoogle Scholar
  62. 62.
    Wang L, Lou Z, Wang R, Fei T, Zhang T (2012) Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor. Sens Actuator B-Chem 171–172:1180–1185.  https://doi.org/10.1016/j.snb.2012.06.063CrossRefGoogle Scholar
  63. 63.
    Koo WT, Yu S, Choi SJ, Jang JS, Cheong JY, Kim ID (2017) Nanoscale PdO catalyst functionalized Co3O4 hollow nanocages using MOF templates for selective detection of acetone molecules in exhaled breath. ACS Appl Mater Interfaces 9(9):8201–8210.  https://doi.org/10.1021/acsami.7b01284CrossRefGoogle Scholar
  64. 64.
    Kim J-H, Jeong H-M, Na CW, Yoon J-W, Abdel-Hady F, Wazzan AA, Lee J-H (2016) Highly selective and sensitive xylene sensors using Cr2O3-ZnCr2O4 hetero-nanostructures prepared by galvanic replacement. Sens Actuator B-Chem 235:498–506.  https://doi.org/10.1016/j.snb.2016.05.104CrossRefGoogle Scholar
  65. 65.
    Li Z, Song P, Yang Z, Wang Q (2018) In situ formation of one-dimensional CoMoO4/MoO3 heterojunction as an effective trimethylamine gas sensor. Ceram Int 44(3):3364–3370.  https://doi.org/10.1016/j.ceramint.2017.11.126CrossRefGoogle Scholar
  66. 66.
    Kwon YJ, Kang SY, Mirzaei A, Choi MS, Bang JH, Kim SS, Kim HW (2017) Enhancement of gas sensing properties by the functionalization of ZnO-branched SnO2 nanowires with Cr2O3 nanoparticles. Sens Actuator B-Chem 249:656–666.  https://doi.org/10.1016/j.snb.2017.04.053CrossRefGoogle Scholar
  67. 67.
    Li XB, Ma SY, Li FM, Chen Y, Zhang QQ, Yang XH, Wang CY, Zhu J (2013) Porous spheres-like ZnO nanostructure as sensitive gas sensors for acetone detection. Mater Lett 100:119–123.  https://doi.org/10.1016/j.matlet.2013.02.117CrossRefGoogle Scholar
  68. 68.
    Zhu L, Zeng W (2017) Room-temperature gas sensing of ZnO-based gas sensor: a review. Sens Actuator A-Phys 267:242–261.  https://doi.org/10.1016/j.sna.2017.10.021CrossRefGoogle Scholar
  69. 69.
    Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A new detector for gaseous components using semiconductive thin films. Anal Chem 34(11):1502–1503.  https://doi.org/10.1021/ac60191a001CrossRefGoogle Scholar
  70. 70.
    Liu J, Wang T, Wang B, Sun P, Yang Q, Liang X, Song H, Lu G (2017) Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material. Sens Actuator B-Chem 245:551–559.  https://doi.org/10.1016/j.snb.2017.01.148CrossRefGoogle Scholar
  71. 71.
    San X, Li M, Liu D, Wang G, Shen Y, Meng D, Meng F (2018) A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties. J Alloy Compd 739:260–269.  https://doi.org/10.1016/j.jallcom.2017.12.168CrossRefGoogle Scholar
  72. 72.
    Li C, Feng C, Qu F, Liu J, Zhu L, Lin Y, Wang Y, Li F, Zhou J, Ruan S (2015) Electrospun nanofibers of p-type NiO/n-type ZnO heterojunction with different NiO content and its influence on trimethylamine sensing properties. Sens Actuator B-Chem 207:90–96.  https://doi.org/10.1016/j.snb.2014.10.035CrossRefGoogle Scholar
  73. 73.
    Katoch A, Kim JH, Kwon YJ, Kim HW, Kim SS (2015) Bifunctional sensing mechanism of SnO2-ZnO composite nanofibers for drastically enhancing the sensing behavior in H2 gas. ACS Appl Mater Interfaces 7(21):11351–11358.  https://doi.org/10.1021/acsami.5b01817CrossRefGoogle Scholar
  74. 74.
    Bagheri-Mohagheghi MM, Shahtahmasebi N, Alinejad MR, Youssefi A, Shokooh-Saremi M (2008) The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing-complexing sol-gel method. Phys B 403(13):2431–2437.  https://doi.org/10.1016/j.physb.2008.01.004CrossRefGoogle Scholar
  75. 75.
    Xu H, Ju J, Li W, Zhang J, Wang J, Cao B (2016) Superior triethylamine-sensing properties based on TiO2/SnO2 n–n heterojunction nanosheets directly grown on ceramic tubes. Sens Actuator B-Chem 228:634–642.  https://doi.org/10.1016/j.snb.2016.01.059CrossRefGoogle Scholar
  76. 76.
    Ju D, Xu H, Xu Q, Gong H, Qiu Z, Guo J, Zhang J, Cao B (2015) High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors. Sens Actuator B-Chem 215:39–44.  https://doi.org/10.1016/j.snb.2015.03.015CrossRefGoogle Scholar
  77. 77.
    Huang H, Lee YC, Tan OK, Zhou W, Peng N, Zhang Q (2009) High sensitivity SnO2 single-nanorod sensors for the detection of H2 gas at low temperature. Nanotechnology 20(11):115501.  https://doi.org/10.1088/0957-4484/20/11/115501CrossRefGoogle Scholar
  78. 78.
    Choi YJ, Hwang IS, Park JG, Choi KJ, Park JH, Lee JH (2008) Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity. Nanotechnology 19(9):095508.  https://doi.org/10.1088/0957-4484/19/9/095508CrossRefGoogle Scholar
  79. 79.
    Joshi S, Satyanarayana L, Manjula P, Sunkara MV, Ippolito SJ (2015) Chemo-resistive CO2 gas sensor based on CuO-SnO2 heterojunction nanocomposite material. In: 2015 2nd international symposium on physics and technology of sensors (ISPTS), pp 43–48, 7–10 Mar 2015.  https://doi.org/10.1109/ispts.2015.7220079
  80. 80.
    Hu J, Yang J, Wang W, Xue Y, Sun Y, Li P, Lian K, Zhang W, Chen L, Shi J, Chen Y (2018) Synthesis and gas sensing properties of NiO/SnO2 hierarchical structures toward ppb-level acetone detection. Mater Res Bull 102:294–303.  https://doi.org/10.1016/j.materresbull.2018.02.006CrossRefGoogle Scholar
  81. 81.
    Meng D, Liu D, Wang G, Shen Y, San X, Li M, Meng F (2018) Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens Actuator B-Chem 273:418–428.  https://doi.org/10.1016/j.snb.2018.06.030CrossRefGoogle Scholar
  82. 82.
    Nasirian S, Milani Moghaddam H (2015) Polyaniline assisted by TiO2: SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions. Appl Surf Sci 328:395–404.  https://doi.org/10.1016/j.apsusc.2014.12.051CrossRefGoogle Scholar
  83. 83.
    Li Z, Ding D, Liu Q, Ning C (2013) Hydrogen sensing with Ni-doped TiO2 nanotubes. Sensors 13(7):8393–8402.  https://doi.org/10.3390/s130708393CrossRefGoogle Scholar
  84. 84.
    Li Z, Yao Z, Haidry AA, Plecenik T, Xie L, Sun L, Fatima Q (2018) Resistive-type hydrogen gas sensor based on TiO2: a review. Int J Hydrog Energy 43(45):21114–21132.  https://doi.org/10.1016/j.ijhydene.2018.09.051CrossRefGoogle Scholar
  85. 85.
    Seo M-H, Yuasa M, Kida T, Huh J-S, Shimanoe K, Yamazoe N (2009) Gas sensing characteristics and porosity control of nanostructured films composed of TiO2 nanotubes. Sens Actuator B-Chem 137(2):513–520.  https://doi.org/10.1016/j.snb.2009.01.057CrossRefGoogle Scholar
  86. 86.
    Lee J, Kim DH, Hong S-H, Jho JY (2011) A hydrogen gas sensor employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sens Actuator B-Chem 160(1):1494–1498.  https://doi.org/10.1016/j.snb.2011.08.001CrossRefGoogle Scholar
  87. 87.
    Yu A, Xun H, Yi J (2019) Improving hydrogen sensing performance of TiO2 nanotube arrays by ZnO modification. Front Mater 6.  https://doi.org/10.3389/fmats.2019.00070
  88. 88.
    Liang YQ, Cui ZD, Zhu SL, Li ZY, Yang XJ, Chen YJ, Ma JM (2013) Design of a highly sensitive ethanol sensor using a nano-coaxial p-Co3O4/n-TiO2 heterojunction synthesized at low temperature. Nanoscale 5(22):10916–10926.  https://doi.org/10.1039/c3nr03616bCrossRefGoogle Scholar
  89. 89.
    Alev O, Şennik E, Öztürk ZZ (2018) Improved gas sensing performance of p-copper oxide thin film/n-TiO2 nanotubes heterostructure. J Alloy Compd 749:221–228.  https://doi.org/10.1016/j.jallcom.2018.03.268CrossRefGoogle Scholar
  90. 90.
    Song C, Li C, Yin Y, Xiao J, Zhang X, Song M, Dong W (2015) Preparation and gas sensing properties of partially broken WO3 nanotubes. Vacuum 114:13–16.  https://doi.org/10.1016/j.vacuum.2014.12.019CrossRefGoogle Scholar
  91. 91.
    Su X, Xiao F, Li Y, Jian J, Sun Q, Wang J (2010) Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process. Mater Lett 64(10):1232–1234.  https://doi.org/10.1016/j.matlet.2010.02.063CrossRefGoogle Scholar
  92. 92.
    Siciliano T, Tepore A, Micocci G, Serra A, Manno D, Filippo E (2008) WO3 gas sensors prepared by thermal oxidization of tungsten. Sens Actuator B-Chem 133(1):321–326.  https://doi.org/10.1016/j.snb.2008.02.028CrossRefGoogle Scholar
  93. 93.
    Teoh LG, Hon YM, Shieh J, Lai WH, Hon MH (2003) Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film. Sens Actuator B-Chem 96(1):219–225.  https://doi.org/10.1016/S0925-4005(03)00528-8CrossRefGoogle Scholar
  94. 94.
    Shen Y, Yamazaki T, Liu Z, Meng D, Kikuta T, Nakatani N (2009) Influence of effective surface area on gas sensing properties of WO3 sputtered thin films. Thin Solid Films 517(6):2069–2072.  https://doi.org/10.1016/j.tsf.2008.10.021CrossRefGoogle Scholar
  95. 95.
    Xiang Q, Meng GF, Zhao HB, Zhang Y, Li H, Ma WJ, Xu JQ (2010) Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J Phys Chem C 114(5):2049–2055.  https://doi.org/10.1021/jp909742dCrossRefGoogle Scholar
  96. 96.
    Naik AJT, Parkin IP, Binions R (2014) Gas sensing studies of a n-n hetero-junction array based on WO3 and ZnO composites. IEEE Sens J 14(9):3137–3147.  https://doi.org/10.1109/jsen.2014.2324285CrossRefGoogle Scholar
  97. 97.
    Yin L, Qu G, Guo P, Zhang R, Sun J, Chen D (2019) Construction and enhanced low-temperature H2S-sensing performance of novel hierarchical CuO@WO3 nanocomposites. J Alloy Compd 785:367–373.  https://doi.org/10.1016/j.jallcom.2019.01.037CrossRefGoogle Scholar
  98. 98.
    Choi S, Bonyani M, Sun G-J, Lee JK, Hyun SK, Lee C (2018) Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors. Appl Surf Sci 432:241–249.  https://doi.org/10.1016/j.apsusc.2017.01.245CrossRefGoogle Scholar
  99. 99.
    He M, Xie L, Zhao X, Hu X, Li S, Zhu Z-G (2019) Highly sensitive and selective H2S gas sensors based on flower-like WO3/CuO composites operating at low/room temperature. J Alloy Compd 788:36–43.  https://doi.org/10.1016/j.jallcom.2019.01.349CrossRefGoogle Scholar
  100. 100.
    Annanouch FE, Haddi Z, Vallejos S, Umek P, Guttmann P, Bittencourt C, Llobet E (2015) Aerosol-assisted CVD-grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of H2S. ACS Appl Mater Interfaces 7(12):6842–6851.  https://doi.org/10.1021/acsami.5b00411CrossRefGoogle Scholar
  101. 101.
    Vuong NM, Trung TN, Hien TT, Chinh ND, Quang ND, Lee D, Kim D, Phan T-L, Kim D (2015) Ni2O3 decoration of WO3 thin film for high sensitivity NH3 gas sensor. Mater Trans 56(9):1354–1357.  https://doi.org/10.2320/matertrans.ma201572
  102. 102.
    Zheng Q, Huang J, Yang H, Chen Y (2017) A high-performance nanobridged MoO3 UV photodetector based on nanojunctions with switching characteristics. Nanotechnology 28(4):045202.  https://doi.org/10.1088/1361-6528/28/4/045202CrossRefGoogle Scholar
  103. 103.
    Ranjbar S, Brammertz G, Vermang B, Hadipour A, Cong S, Suganuma K, Schnabel T, Meuris M, da Cunha AF, Poortmans J (2017) Improvement of kesterite solar cell performance by solution synthesized MoO3 interfacial layer. Phys Status Solidi A-Appl Mater 214(1):1600534.  https://doi.org/10.1002/pssa.201600534CrossRefGoogle Scholar
  104. 104.
    Lü Z, Wang Y, Li X, Xiao J, Deng Z (2017) Role of MoO3-modified organic photovoltaic-type charge generation layer in tandem organic light-emitting diodes. Synth Met 229:47–51.  https://doi.org/10.1016/j.synthmet.2017.05.003CrossRefGoogle Scholar
  105. 105.
    Cao X, Zheng B, Shi W, Yang J, Fan Z, Luo Z, Rui X, Chen B, Yan Q, Zhang H (2015) Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater 27(32):4695–4701.  https://doi.org/10.1002/adma.201501310CrossRefGoogle Scholar
  106. 106.
    Rahmani MB, Keshmiri SH, Yu J, Sadek AZ, Al-Mashat L, Moafi A, Latham K, Li YX, Wlodarski W, Kalantar-zadeh K (2010) Gas sensing properties of thermally evaporated lamellar MoO3. Sens Actuator B-Chem 145(1):13–19.  https://doi.org/10.1016/j.snb.2009.11.007CrossRefGoogle Scholar
  107. 107.
    Yang S, Wang Z, Hu Y, Luo X, Lei J, Zhou D, Fei L, Wang Y, Gu H (2015) Highly responsive room-temperature hydrogen sensing of α-MoO3 nanoribbon membranes. ACS Appl Mater Interfaces 7(17):9247–9253.  https://doi.org/10.1021/acsami.5b01858CrossRefGoogle Scholar
  108. 108.
    Yang S, Wang Z, Zou Y, Luo X, Pan X, Zhang X, Hu Y, Chen K, Huang Z, Wang S, Zhang K, Gu H (2017) Remarkably accelerated room-temperature hydrogen sensing of MoO3 nanoribbon/graphene composites by suppressing the nanojunction effects. Sens Actuator B-Chem 248:160–168.  https://doi.org/10.1016/j.snb.2017.03.106CrossRefGoogle Scholar
  109. 109.
    Yang S, Lei G, Lan Z, Xie W, Yang B, Xu H, Wang Z, Gu H (2019) Enhancement of the room-temperature hydrogen sensing performance of MoO3 nanoribbons annealed in a reducing gas. Int J Hydrog Energy 44(14):7725–7733.  https://doi.org/10.1016/j.ijhydene.2019.01.205CrossRefGoogle Scholar
  110. 110.
    Comini E, Yubao L, Brando Y, Sberveglieri G (2005) Gas sensing properties of MoO3 nanorods to CO and CH3OH. Chem Phys Lett 407(4–6):368–371.  https://doi.org/10.1016/j.cplett.2005.03.116CrossRefGoogle Scholar
  111. 111.
    Shen J, Guo S, Chen C, Sun L, Wen S, Chen Y, Ruan S (2017) Synthesis of Ni-doped α-MoO3 nanolamella and their improved gas sensing properties. Sens Actuator B-Chem 252:757–763.  https://doi.org/10.1016/j.snb.2017.06.040CrossRefGoogle Scholar
  112. 112.
    Yu H-L, Li L, Gao X-M, Zhang Y, Meng F, Wang T-S, Xiao G, Chen Y-J, Zhu C-L (2012) Synthesis and H2S gas sensing properties of cage-like α-MoO3/ZnO composite. Sens Actuator B-Chem 171–172:679–685.  https://doi.org/10.1016/j.snb.2012.05.054CrossRefGoogle Scholar
  113. 113.
    Wang T-S, Wang Q-S, Zhu C-L, Ouyang Q-Y, Qi L-H, Li C-Y, Xiao G, Gao P, Chen Y-J (2012) Synthesis and enhanced H2S gas sensing properties of α-MoO3/CuO p–n junction nanocomposite. Sens Actuator B-Chem 171–172:256–262.  https://doi.org/10.1016/j.snb.2012.03.058CrossRefGoogle Scholar
  114. 114.
    Gao X, Ouyang Q, Zhu C, Zhang X, Chen Y (2019) Porous MoO3/SnO2 nanoflakes with n–n junctions for sensing H2S. ACS Appl Nano Mater 2(4):2418–2425.  https://doi.org/10.1021/acsanm.9b00308CrossRefGoogle Scholar
  115. 115.
    Xing LL, Yuan S, Chen ZH, Chen YJ, Xue XY (2011) Enhanced gas sensing performance of SnO2/α-MoO3 heterostructure nanobelts. Nanotechnology 22(22):225502.  https://doi.org/10.1088/0957-4484/22/22/225502CrossRefGoogle Scholar
  116. 116.
    Chen Y-J, Xiao G, Wang T-S, Zhang F, Ma Y, Gao P, Zhu C-L, Zhang E, Xu Z, Li Q (2011) α-MoO3/TiO2 core/shell nanorods: controlled-synthesis and low-temperature gas sensing properties. Sens Actuator B-Chem 155(1):270–277.  https://doi.org/10.1016/j.snb.2010.12.034
  117. 117.
    Abareshi M, Sajjadi SH, Zebarjad SM, Goharshadi EK (2011) Fabrication, characterization, and measurement of viscosity of α-Fe2O3-glycerol nanofluids. J Mol Liq 163(1):27–32.  https://doi.org/10.1016/j.molliq.2011.07.007CrossRefGoogle Scholar
  118. 118.
    Huang Y, Chen W, Zhang S, Kuang Z, Ao D, Alkurd NR, Zhou W, Liu W, Shen W, Li Z (2015) A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Appl Surf Sci 351:1025–1033.  https://doi.org/10.1016/j.apsusc.2015.06.053CrossRefGoogle Scholar
  119. 119.
    Banerjee A, Aravindan V, Bhatnagar S, Mhamane D, Madhavi S, Ogale S (2013) Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy 2(5):890–896.  https://doi.org/10.1016/j.nanoen.2013.03.006CrossRefGoogle Scholar
  120. 120.
    Wang L, Lou Z, Deng J, Zhang R, Zhang T (2015) Ethanol gas detection using a yolk-shell (core-shell) α-Fe2O3 nanospheres as sensing material. ACS Appl Mater Interfaces 7(23):13098–13104.  https://doi.org/10.1021/acsami.5b03978CrossRefGoogle Scholar
  121. 121.
    Wu C, Yin P, Zhu X, OuYang C, Xie Y (2006) Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B 110(36):17806–17812.  https://doi.org/10.1021/jp0633906CrossRefGoogle Scholar
  122. 122.
    Chen Z, Cvelbar U, Mozetič M, He J, Sunkara MK (2008) Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem Mater 20(9):3224–3228.  https://doi.org/10.1021/cm800288yCrossRefGoogle Scholar
  123. 123.
    Hu X, Yu JC, Gong J, Li Q, Li G (2007) α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv Mater 19(17):2324–2329.  https://doi.org/10.1002/adma.200602176CrossRefGoogle Scholar
  124. 124.
    Nithya VD, Arul NS (2016) Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J Power Sources 327:297–318.  https://doi.org/10.1016/j.jpowsour.2016.07.033CrossRefGoogle Scholar
  125. 125.
    Mishra M, Chun D-M (2015) α-Fe2O3 as a photocatalytic material: a review. Appl Catal A-Gen 498:126–141.  https://doi.org/10.1016/j.apcata.2015.03.023CrossRefGoogle Scholar
  126. 126.
    Gnanaprakash G, Ayyappan S, Jayakumar T, Philip J, Raj B (2006) Magnetic nanoparticles with enhanced γ-Fe2O3 to α-Fe2O3 phase transition temperature. Nanotechnology 17(23):5851–5857.  https://doi.org/10.1088/0957-4484/17/23/023CrossRefGoogle Scholar
  127. 127.
    Navale ST, Bandgar DK, Nalage SR, Khuspe GD, Chougule MA, Kolekar YD, Sen S, Patil VB (2013) Synthesis of Fe2O3 nanoparticles for nitrogen dioxide gas sensing applications. Ceram Int 39(6):6453–6460.  https://doi.org/10.1016/j.ceramint.2013.01.074CrossRefGoogle Scholar
  128. 128.
    Sun P, You L, Wang D, Sun Y, Ma J, Lu G (2011) Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods. Sens Actuator B-Chem 156(1):368–374.  https://doi.org/10.1016/j.snb.2011.04.050CrossRefGoogle Scholar
  129. 129.
    Zheng W, Li Z, Zhang H, Wang W, Wang Y, Wang C (2009) Electrospinning route for α-Fe2O3 ceramic nanofibers and their gas sensing properties. Mater Res Bull 44(6):1432–1436.  https://doi.org/10.1016/j.materresbull.2008.12.013CrossRefGoogle Scholar
  130. 130.
    Lupan O, Postica V, Wolff N, Polonskyi O, Duppel V, Kaidas V, Lazari E, Ababii N, Faupel F, Kienle L, Adelung R (2017) Localized synthesis of iron oxide nanowires and fabrication of high performance nanosensors based on a single Fe2O3 nanowire. Small 13(16):1602868.  https://doi.org/10.1002/smll.201602868CrossRefGoogle Scholar
  131. 131.
    Zhang F, Yang H, Xie X, Li L, Zhang L, Yu J, Zhao H, Liu B (2009) Controlled synthesis and gas-sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes. Sens Actuator B-Chem 141(2):381–389.  https://doi.org/10.1016/j.snb.2009.06.049CrossRefGoogle Scholar
  132. 132.
    Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi SG, Neri G (2015) Synthesis, characterization and gas sensing properties of Ag@alpha-Fe2O3 core-shell nanocomposites. Nanomaterials 5(2):737–749.  https://doi.org/10.3390/nano5020737CrossRefGoogle Scholar
  133. 133.
    Zhang Y, Zhang D, Guo W, Chen S (2016) The α-Fe2O3/g-C3N4 heterostructural nanocomposites with enhanced ethanol gas sensing performance. J Alloy Compd 685:84–90.  https://doi.org/10.1016/j.jallcom.2016.05.220CrossRefGoogle Scholar
  134. 134.
    Liang S, Zhu J, Wang C, Yu S, Bi H, Liu X, Wang X (2014) Fabrication of α-Fe2O3@graphene nanostructures for enhanced gas-sensing property to ethanol. Appl Surf Sci 292:278–284.  https://doi.org/10.1016/j.apsusc.2013.11.130CrossRefGoogle Scholar
  135. 135.
    Kheel H, Sun G-J, Lee JK, Lee S, Dwivedi RP, Lee C (2016) Enhanced H2S sensing performance of TiO2-decorated α-Fe2O3 nanorod sensors. Ceram Int 42(16):18597–18604.  https://doi.org/10.1016/j.ceramint.2016.08.203CrossRefGoogle Scholar
  136. 136.
    Tan W, Tan J, Fan L, Yu Z, Qian J, Huang X (2018) Fe2O3-loaded NiO nanosheets for fast response/recovery and high response gas sensor. Sens Actuator B-Chem 256:282–293.  https://doi.org/10.1016/j.snb.2017.09.187CrossRefGoogle Scholar
  137. 137.
    Fan K, Guo J, Cha L, Chen Q, Ma J (2017) Atomic layer deposition of ZnO onto Fe2O3 nanoplates for enhanced H2S sensing. J Alloy Compd 698:336–340.  https://doi.org/10.1016/j.jallcom.2016.12.203CrossRefGoogle Scholar
  138. 138.
    Xu P, Cheng Z, Pan Q, Xu J, Xiang Q, Yu W, Chu Y (2008) High aspect ratio In2O3 nanowires: synthesis, mechanism and NO2 gas-sensing properties. Sens Actuator B-Chem 130(2):802–808.  https://doi.org/10.1016/j.snb.2007.10.044
  139. 139.
    Liu X, Zhao K, Sun X, Zhang C, Duan X, Hou P, Zhao G, Zhang S, Yang H, Cao R, Xu X (2019) Rational design of sensitivity enhanced and stability improved TEA gas sensor assembled with Pd nanoparticles-functionalized In2O3 composites. Sens Actuator B-Chem 285:1–10.  https://doi.org/10.1016/j.snb.2019.01.029CrossRefGoogle Scholar
  140. 140.
    Park S, Kim S, Sun G-J, Choi S, Lee S, Lee C (2015) Ethanol sensing properties of networked In2O3 nanorods decorated with Cr2O3-nanoparticles. Ceram Int 41(8):9823–9827.  https://doi.org/10.1016/j.ceramint.2015.04.055CrossRefGoogle Scholar
  141. 141.
    Liang X, Kim T-H, Yoon J-W, Kwak C-H, Lee J-H (2015) Ultrasensitive and ultraselective detection of H2S using electrospun CuO-loaded In2O3 nanofiber sensors assisted by pulse heating. Sens Actuator B-Chem 209:934–942.  https://doi.org/10.1016/j.snb.2014.11.130CrossRefGoogle Scholar
  142. 142.
    Vuong NM, Hieu NM, Kim D, Choi BI, Kim M (2014) Ni2O3 decoration of In2O3 nanostructures for catalytically enhanced methane sensing. Appl Surf Sci 317:765–770.  https://doi.org/10.1016/j.apsusc.2014.08.125CrossRefGoogle Scholar
  143. 143.
    Lee C-S, Kim I-D, Lee J-H (2013) Selective and sensitive detection of trimethylamine using ZnO–In2O3 composite nanofibers. Sens Actuator B-Chem 181:463–470.  https://doi.org/10.1016/j.snb.2013.02.008CrossRefGoogle Scholar
  144. 144.
    Singh N, Ponzoni A, Gupta RK, Lee PS, Comini E (2011) Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sens Actuator B-Chem 160(1):1346–1351.  https://doi.org/10.1016/j.snb.2011.09.073CrossRefGoogle Scholar
  145. 145.
    Wang B, Jin HT, Zheng ZQ, Zhou YH, Gao C (2017) Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures. Sens Actuator B-Chem 244:344–356.  https://doi.org/10.1016/j.snb.2016.12.044CrossRefGoogle Scholar
  146. 146.
    Park S, Kim S, Sun G-J, Lee C (2015) Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles. ACS Appl Mater Interfaces 7(15):8138–8146.  https://doi.org/10.1021/acsami.5b00972CrossRefGoogle Scholar
  147. 147.
    Haldorai Y, Kim JY, Vilian ATE, Heo NS, Huh YS, Han Y-K (2016) An enzyme-free electrochemical sensor based on reduced graphene oxide/Co3O4 nanospindle composite for sensitive detection of nitrite. Sens Actuator B-Chem 227:92–99.  https://doi.org/10.1016/j.snb.2015.12.032CrossRefGoogle Scholar
  148. 148.
    Yoon J-W, Choi J-K, Lee J-H (2012) Design of a highly sensitive and selective C2H5OH sensor using p-type Co3O4 nanofibers. Sens Actuator B-Chem 161(1):570–577.  https://doi.org/10.1016/j.snb.2011.11.002CrossRefGoogle Scholar
  149. 149.
    Deng J, Zhang R, Wang L, Lou Z, Zhang T (2015) Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sens Actuator B-Chem 209:449–455.  https://doi.org/10.1016/j.snb.2014.11.141CrossRefGoogle Scholar
  150. 150.
    Dong X, Su Y, Lu T, Zhang L, Wu L, Lv Y (2018) MOFs-derived dodecahedra porous Co3O4: an efficient cataluminescence sensing material for H2S. Sens Actuator B-Chem 258:349–357.  https://doi.org/10.1016/j.snb.2017.11.090CrossRefGoogle Scholar
  151. 151.
    Akamatsu T, Itoh T, Izu N, Shin W (2013) NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors. Sensors 13(9):12467–12481CrossRefGoogle Scholar
  152. 152.
    Zhou T, Zhang T, Deng J, Zhang R, Lou Z, Wang L (2017) P-type Co3O4 nanomaterials-based gas sensor: preparation and acetone sensing performance. Sens Actuator B-Chem 242:369–377.  https://doi.org/10.1016/j.snb.2016.11.067CrossRefGoogle Scholar
  153. 153.
    Tan J, Dun M, Li L, Huang X (2018) Co3O4 nanoboxes with abundant porestructure boosted ultrasensitive toluene gas sensors. Mater Res Express 5(4):045036.  https://doi.org/10.1088/2053-1591/aabbe6CrossRefGoogle Scholar
  154. 154.
    Zhang Z, Zhu L, Wen Z, Ye Z (2017) Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sens Actuator B-Chem 238:1052–1059.  https://doi.org/10.1016/j.snb.2016.07.154CrossRefGoogle Scholar
  155. 155.
    Jeong HM, Kim JH, Jeong SY, Kwak CH, Lee JH (2016) Co3O4-SnO2 hollow heteronanostructures: facile control of gas selectivity by compositional tuning of sensing materials via galvanic replacement. ACS Appl Mater Interfaces 8(12):7877–7883.  https://doi.org/10.1021/acsami.6b00216CrossRefGoogle Scholar
  156. 156.
    Bai S, Guo J, Shu X, Xiang X, Luo R, Li D, Chen A, Liu CC (2017) Surface functionalization of Co3O4 hollow spheres with ZnO nanoparticles for modulating sensing properties of formaldehyde. Sens Actuator B-Chem 245:359–368.  https://doi.org/10.1016/j.snb.2017.01.102CrossRefGoogle Scholar
  157. 157.
    Zhang L, Jing X, Liu J, Wang J, Sun Y (2015) Facile synthesis of mesoporous ZnO/CoO4 microspheres with enhanced gas-sensing for ethanol. Sens Actuator B-Chem 221:1492–1498.  https://doi.org/10.1016/j.snb.2015.07.113CrossRefGoogle Scholar
  158. 158.
    Xiong Y, Xu W, Zhu Z, Xue Q, Lu W, Ding D, Zhu L (2017) ZIF-derived porous ZnO-Co3O4 hollow polyhedrons heterostructure with highly enhanced ethanol detection performance. Sens Actuator B-Chem 253:523–532.  https://doi.org/10.1016/j.snb.2017.06.169CrossRefGoogle Scholar
  159. 159.
    Cao J, Wang Z, Wang R, Liu S, Fei T, Wang L, Zhang T (2015) Core-shell Co3O4/α-Fe2O3 heterostructure nanofibers with enhanced gas sensing properties. RSC Adv 5(46):36340–36346.  https://doi.org/10.1039/C5RA03675ECrossRefGoogle Scholar
  160. 160.
    Wang L, Lou Z, Zhang R, Zhou T, Deng J, Zhang T (2016) Hybrid Co3O4/SnO2 core-shell nanospheres as real-time rapid-response sensors for ammonia gas. ACS Appl Mater Interfaces 8(10):6539–6545.  https://doi.org/10.1021/acsami.6b00305CrossRefGoogle Scholar
  161. 161.
    Hübner M, Simion CE, Tomescu-Stănoiu A, Pokhrel S, Bârsan N, Weimar U (2011) Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sens Actuator B-Chem 153(2):347–353.  https://doi.org/10.1016/j.snb.2010.10.046CrossRefGoogle Scholar
  162. 162.
    Liao L, Zhang Z, Yan B, Zheng Z, Bao QL, Wu T, Li CM, Shen ZX, Zhang JX, Gong H, Li JC, Yu T (2009) Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology 20(8):085203.  https://doi.org/10.1088/0957-4484/20/8/085203CrossRefGoogle Scholar
  163. 163.
    Zhao X, Wang P, Li B (2010) CuO/ZnO core/shell heterostructure nanowire arrays: synthesis, optical property, and energy application. Chem Commun 46(36):6768–6770.  https://doi.org/10.1039/C0CC01610ACrossRefGoogle Scholar
  164. 164.
    Steinhauer S, Brunet E, Maier T, Mutinati GC, Köck A (2013) Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere. Sens Actuator B-Chem 186:550–556.  https://doi.org/10.1016/j.snb.2013.06.044CrossRefGoogle Scholar
  165. 165.
    Hoa ND, Van Quy N, Jung H, Kim D, Kim H, Hong S-K (2010) Synthesis of porous CuO nanowires and its application to hydrogen detection. Sens Actuator B-Chem 146(1):266–272.  https://doi.org/10.1016/j.snb.2010.02.058CrossRefGoogle Scholar
  166. 166.
    Park S, Kim S, Kheel H, Hyun SK, Jin C, Lee C (2016) Enhanced H2S gas sensing performance of networked CuO-ZnO composite nanoparticle sensor. Mater Res Bull 82:130–135.  https://doi.org/10.1016/j.materresbull.2016.02.011CrossRefGoogle Scholar
  167. 167.
    Wang Y, Qu F, Liu J, Wang Y, Zhou J, Ruan S (2015) Enhanced H2S sensing characteristics of CuO-NiO core-shell microspheres sensors. Sens Actuator B-Chem 209:515–523.  https://doi.org/10.1016/j.snb.2014.12.010CrossRefGoogle Scholar
  168. 168.
    Kim J-H, Katoch A, Kim SS (2016) Optimum shell thickness and underlying sensing mechanism in p–n CuO–ZnO core–shell nanowires. Sens Actuator B-Chem 222:249–256.  https://doi.org/10.1016/j.snb.2015.08.062CrossRefGoogle Scholar
  169. 169.
    Godbole R, Godbole V, Bhagwat S (2019) Palladium enriched tungsten oxide thin films: an efficient gas sensor for hazardous gases. Eur Phys J B 92(4):78.  https://doi.org/10.1140/epjb/e2019-90622-0CrossRefGoogle Scholar
  170. 170.
    Kim W, Choi M, Yong K (2015) Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens Actuator B-Chem 209:989–996.  https://doi.org/10.1016/j.snb.2014.12.072CrossRefGoogle Scholar
  171. 171.
    Zakrzewska K (2004) Gas sensing mechanism of TiO2-based thin films. Vacuum 74(2):335–338.  https://doi.org/10.1016/j.vacuum.2003.12.152CrossRefGoogle Scholar
  172. 172.
    Wu J, Huang Q, Zeng D, Zhang S, Yang L, Xia D, Xiong Z, Xie C (2014) Al-doping induced formation of oxygen-vacancy for enhancing gas-sensing properties of SnO2 NTs by electrospinning. Sens Actuator B-Chem 198:62–69.  https://doi.org/10.1016/j.snb.2014.03.012CrossRefGoogle Scholar
  173. 173.
    Miller DR, Akbar SA, Morris PA (2014) Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuator B-Chem 204:250–272.  https://doi.org/10.1016/j.snb.2014.07.074CrossRefGoogle Scholar
  174. 174.
    Huang H, Gong H, Chow CL, Guo J, White TJ, Tse MS, Tan OK (2011) Low-temperature growth of SnO2 nanorod arrays and tunable n-p-n sensing response of a ZnO/SnO2 heterojunction for exclusive hydrogen sensors. Adv Funct Mater 21(14):2680–2686.  https://doi.org/10.1002/adfm.201002115CrossRefGoogle Scholar
  175. 175.
    Wang W, Tian Y, Li X, Wang X, He H, Xu Y, He C (2012) Enhanced ethanol sensing properties of Zn-doped SnO2 porous hollow microspheres. Appl Surf Sci 261:890–895.  https://doi.org/10.1016/j.apsusc.2012.08.118CrossRefGoogle Scholar
  176. 176.
    Ouyang Q-Y, Li L, Wang Q-S, Zhang Y, Wang T-S, Meng F-N, Chen Y-J, Gao P (2012) Facile synthesis and enhanced H2S sensing performances of Fe-doped α-MoO3 micro-structures. Sens Actuator B-Chem 169:17–25.  https://doi.org/10.1016/j.snb.2012.01.042CrossRefGoogle Scholar
  177. 177.
    Al-Hadeethi Y, Umar A, Ibrahim AA, Al-Heniti SH, Kumar R, Baskoutas S, Raffah BM (2017) Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles. Ceram Int 43(9):6765–6770.  https://doi.org/10.1016/j.ceramint.2017.02.088CrossRefGoogle Scholar
  178. 178.
    Zamani C, Casals O, Andreu T, Morante JR, Romano-Rodriguez A (2009) Detection of amines with chromium-doped WO3 mesoporous material. Sens Actuator B-Chem 140(2):557–562.  https://doi.org/10.1016/j.snb.2009.04.051CrossRefGoogle Scholar
  179. 179.
    Gu D, Li X, Zhao Y, Wang J (2017) Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sens Actuator B-Chem 244:67–76.  https://doi.org/10.1016/j.snb.2016.12.125CrossRefGoogle Scholar
  180. 180.
    Choi KS, Park S, Chang S-P (2017) Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanoparticles. Sens Actuator B-Chem 238:871–879.  https://doi.org/10.1016/j.snb.2016.07.146CrossRefGoogle Scholar
  181. 181.
    Drmosh QA, Yamani ZH, Hendi AH, Gondal MA, Moqbel RA, Saleh TA, Khan MY (2019) A novel approach to fabricating a ternary rGO/ZnO/Pt system for high-performance hydrogen sensor at low operating temperatures. Appl Surf Sci 464:616–626.  https://doi.org/10.1016/j.apsusc.2018.09.128CrossRefGoogle Scholar
  182. 182.
    Guo L, Chen F, Xie N, Kou X, Wang C, Sun Y, Liu F, Liang X, Gao Y, Yan X, Zhang T, Lu G (2018) Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens Actuator B-Chem 272:185–194.  https://doi.org/10.1016/j.snb.2018.05.161CrossRefGoogle Scholar
  183. 183.
    Luo Y, Zhang C (2018) Pt-activated TiO2-MoS2 nanocomposites for H2 detection at low temperature. J Alloy Compd 747:550–557.  https://doi.org/10.1016/j.jallcom.2018.03.068CrossRefGoogle Scholar
  184. 184.
    Kim J-H, Kim HW, Kim SS (2017) Self-heating effects on the toluene sensing of Pt-functionalized SnO2–ZnO core–shell nanowires. Sens Actuator B-Chem 251:781–794.  https://doi.org/10.1016/j.snb.2017.05.108CrossRefGoogle Scholar
  185. 185.
    Goto T, Itoh T, Akamatsu T, Shin W (2015) CO sensing performance of a micro thermoelectric gas sensor with AuPtPd/SnO2 catalyst and effects of a double catalyst structure with Pt/alpha-Al2O3. Sensors 15(12):31687–31698.  https://doi.org/10.3390/s151229873CrossRefGoogle Scholar
  186. 186.
    Szulczynski B, Namiesnik J, Gebicki J (2017) Determination of odour interactions of three-component gas mixtures using an electronic nose. Sensors 17(10).  https://doi.org/10.3390/s17102380
  187. 187.
    Shin W, Goto T, Nagai D, Itoh T, Tsuruta A, Akamatsu T, Sato K (2018) Thermoelectric array sensors with selective combustion catalysts for breath gas monitoring. Sensors 18(5).  https://doi.org/10.3390/s18051579

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shulin Yang
    • 1
    Email author
  • Zhao Wang
    • 2
  • Gui Lei
    • 1
    • 2
  • Huoxi Xu
    • 1
  • Yongming Hu
    • 2
  • Haoshuang Gu
    • 2
  1. 1.School of Physics and Electronic InformationHuanggang Normal UniversityHuanggangPeople’s Republic of China
  2. 2.Faculty of Physics and Electronic SciencesHubei UniversityWuhanPeople’s Republic of China

Personalised recommendations