Advertisement

Hybridized Graphitic Carbon Nitride (g-CN) as High Performance VOCs Sensor

  • Prashant Kumar Mishra
  • Ritu Malik
  • Vijay K. TomerEmail author
  • Nirav Joshi
Chapter
  • 60 Downloads
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

With most of the quality time spent in the indoor climate, the human continuously inhale harmful gases and risk their life. In recent years, the indoor air quality is extensively denigrated due to the improved life-style thus causing the release of unwanted toxic and health hazardous gases/compounds in the indoor climate. This alarming concern has propelled the need of detection of volatile organic compounds (VOCs) present in our close environment with the help of ultra-efficient gas sensors having high efficiency. During the last decade, 2-dimensional (2D) porous graphitic carbon nitride (g-CN) has attracted much attention in sensing applications for its unique physicochemical properties including high surface to volume ratio, high electron transfer rate, and excellent thermal stability. This book chapter highlights the recent developments and reflects the impact of mesoporous g-CN based nanocomposites on gas sensing technology.

Keywords

Mesoporous Graphitic carbon nitride Volatile organic compounds Gas sensors Selectivity 

Notes

Acknowledgements

RM is thankful to UC Berkeley for providing visiting scholar supports. VKT is thankful to United States-India Education Foundation (USIEF) for Fulbright-Nehru award (Award No: 2308/FNPDR/2017). NJ wants to acknowledge the Brazilian funding agencies: São Paulo Research Foundation-FAPESP (2014/23546-1, 2016/23474-6).

References

  1. 1.
    Malik R, Tomer VK, Joshi N, Chaudhary V, Lin L (2020) Chapter 15, Nanosensors for monitoring indoor pollution in smart cities. In: Nanosensors for smart cities. Elsevier, (UK), pp 251–266 https://doi.org/10.1016/B978-0-12-819870-4.00014-1CrossRefGoogle Scholar
  2. 2.
    Shusterman D (1992) Critical review: the health significance of environmental odor pollution. Arch Environ Health Int J 47:76CrossRefGoogle Scholar
  3. 3.
    Malik R, Tomer VK, Joshi N (2018) Au–TiO2-loaded cubic g-C3N4 nanohybrids for photocatalytic and volatile organic amine sensing applications. ACS Appl Mater Interfaces 10:34087–34097CrossRefGoogle Scholar
  4. 4.
    Gusain A, Joshi N, Varde PV, Aswal DK (2017) Flexible NO gas sensor based on conducting polymer Poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4’,7’-di-2-thienyl-2’,1’,3’-benzothiadiazole)] (PCDTBT). Sens Actuators B 239:734–745CrossRefGoogle Scholar
  5. 5.
    Juntunen J, Matikainen E, Poika MA, Suoranta H, Valle M (1985) Nervous system effects of long-term occupational exposure to toluene. Acta Neurol Scand 72:512CrossRefGoogle Scholar
  6. 6.
    Kumar A, Joshi N, Samanta S, Singh A, Debnath AK, Chauhan AK, Roy M, Prasad R, Roy K, Chehimi MM, Aswal DK, Gupta SK (2015) Room temperature detection of H2S by flexible gold–cobalt phthalocyanine heterojunction thin films. Sens Actuators B 206:653–662CrossRefGoogle Scholar
  7. 7.
    Joshi N, Saxena V, Singh A, Koiry S, Debnath AK, Chehimi MM, Aswal DK, Gupta SK (2014) Flexible H2S sensor based on gold modified polycarbazole films. Sens Actuators B 200:227–234CrossRefGoogle Scholar
  8. 8.
    Materón EM, Lima RS, Joshi N, Shimizu FM, Oliveira ON (2019) Graphene-containing microfluidic and chip-based sensor devices for biomolecules. In: Pandikumar A, Rameshkumar P (eds). Elsevier, UK, pp 321–336Google Scholar
  9. 9.
    Tomer VK, Singh K, Kaur H, Shorie M, Sabherwal P (2017) Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens Actuators B 253:703–713CrossRefGoogle Scholar
  10. 10.
    Malik R, Tomer VK, Chaudhary V, Dahiya MS, Nehra SP, Rana PS, Duhan S (2017) Ordered mesoporous In-(TiO2/WO3) nanohybrid: an ultrasensitive n-butanol sensor. Sens Actuators B 239:364–373CrossRefGoogle Scholar
  11. 11.
    Yücel M, Takagi M, Walterfang M, Lubman DI (2008) Toluene misuse and long-term harms: a systematic review of the neuropsychological and neuroimaging literature. Neurosci Biobehav Rev 32:910CrossRefGoogle Scholar
  12. 12.
    Filley CM, Halliday W, Demasters BKK (2004) The effects of toluene on the central nervous system. J Neuropathol Exp Neurol 63:1CrossRefGoogle Scholar
  13. 13.
    Bing Y, Liu C, Qiao L, Zeng Y, Yu S, Liang Z, Liu J, Luo J, Zheng W (2016) Multistep synthesis of non-spherical SnO2@SnO2 yolk-shell cuboctahedra with nanoparticle-assembled porous structure for toluene detection. Sens Actuators B 231:365CrossRefGoogle Scholar
  14. 14.
    Liu L, Zhang Y, Wang G, Li S, Wang L, Han Y, Jiang X, Wei A (2011) High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C. Sens Actuators B 160:448CrossRefGoogle Scholar
  15. 15.
    Shan H, Liu C, Liu L, Zhang J, Li H, Liu Z, Zhang X, Bo X, Chi X (2013) Excellent Toluene Sensing Properties of SnO2–Fe2O3 interconnected nanotubes. ACS Appl Mater Interfaces 5:6376CrossRefGoogle Scholar
  16. 16.
    Tang W, Wang J (2015) Mechanism for toluene detection of flower-like ZnO sensors prepared by hydrothermal approach: Charge transfer. Sens Actuators B 207:66CrossRefGoogle Scholar
  17. 17.
    Kim WJ, Terada N, Nomura T, Takahashi R, Lee SD, Park JH, Konno A (2002) Effect of formaldehyde on the expression of adhesion molecules in nasal microvascular endothelial cells: the role of formaldehyde in the pathogenesis of sick building syndrome. Clin Exp Allergy 32:287CrossRefGoogle Scholar
  18. 18.
    Adiguzel Y, Kulah H (2015) Breath sensors for lung cancer diagnosis. Biosens Bioelectron 65:121CrossRefGoogle Scholar
  19. 19.
    Polanowska BG, Faber J, Skowron M, Miarka P, Pietrzycka A, Śliwka I, Amann A (2013) Detection of potential chronic kidney disease markers in breath using gas chromatography with mass-spectral detection coupled with thermal desorption method. J Chromatogr A 1301:179CrossRefGoogle Scholar
  20. 20.
    Vilar MR, Beghdadi JE, Debontridder F, Naaman R, Arbel A, Ferraria AM, Rego BD (2006) Development of nitric oxide sensor for asthma attack prevention. Mater Sci Eng 26:253CrossRefGoogle Scholar
  21. 21.
    Tomer VK, Malik R, Joshi N (2019) A special section on applications of 2D/3D materials in sensing and photocatalysis. J Nanosci Nanotechnol 19:5052–5053CrossRefGoogle Scholar
  22. 22.
    Joshi N, Silva LF, Shimizu FM, Mastelaro VR, M’Peko JC, Lin L, Oliveira ON (2019) UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Microchim Acta 186:418CrossRefGoogle Scholar
  23. 23.
    Tomer VK, Malik R (2019) Superior visible light photocatalysis and low-operating temperature VOCs sensor using cubic Ag(0)-MoS2 loaded g-CN 3D porous hybrid. Appl Mater Today 16:193–203CrossRefGoogle Scholar
  24. 24.
    Mekki A, Joshi N, Singh A, Salmi Z, Jha P, Decorse P, Lau S, Mahmoud R, Chehimi MM, Aswal DK Gupta SK (2014) H2S sensing using in-situ photo-polymerized polyaniline-silver nanocomposite films on flexible substrate. Org Electron 15:71–81 Google Scholar
  25. 25.
    Singh A, Salmi Z, Joshi N, Jha P, Decorse P, Lau S, Jouni M, Chehimi M, Aswal DK, Gupta SK (2013) Electrochemical investigation of free-standing polypyrrole-silver nanocomposite films: substrate free electrode material for supercapacitor. RSC Adv 3:24567–24575CrossRefGoogle Scholar
  26. 26.
    Singh A, Salmi Z, Jha P, Joshi N, Kumar A, Lecoq H, Decorse P, Lau S, Aswal DK, Gupta SK, Chehimi MM (2013) One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air-water interface by photopolymerisation. RSC Adv 3:13329–13336CrossRefGoogle Scholar
  27. 27.
    Singh A, Kumar A, Kumar A, Samanta S, Joshi N, Balouria V, Debnath AK, Prasad R, Salmi Z, Chehimi MM, Aswal DK, Gupta SK (2013) Bending stress induced improved chemiresistive gas sensing characteristics of flexible cobalt-phthalocyanine thin films. Appl Phys Lett 102:132107CrossRefGoogle Scholar
  28. 28.
    Singh A, Salmi Z, Joshi N, Jha P, Kumar A, Lecoq H, Lau S, Chehimi MM, Aswal DK, Gupta SK (2013) Photo-induced synthesis of polypyrrole- silver nanocomposite films on N-(3-trimethoxysilylpropyl)pyrrole-modified biaxially oriented polyethylene terephthalate flexible substrates. RSC Adv 3:5506–5523CrossRefGoogle Scholar
  29. 29.
    Nie J, Wu Y, Huang Q, Joshi N, Li N, Meng X, Zheng S, Zhang M, Mi B, Lin L (2019) Dew point measurement using a carbon-based capacitive sensor with active temperature control. ACS Appl Mater Interfaces 11:1699–1705CrossRefGoogle Scholar
  30. 30.
    Liu H, Liu Y, Chu Y, Hayasaka T, Joshi N, Cui Y, Wang X, Lin L (2018) AC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift. Sens Actuators B 263:94–102CrossRefGoogle Scholar
  31. 31.
    Liu H, Chu Y, Liu Y, Hayasaka T, Joshi N, Cui Y, Wang X, You Z, Lin L (2018) Selective sensing of chemical vapors using phase spectra detection on CVD graphene FET. In: IEEE MEMS, pp 210–213Google Scholar
  32. 32.
    Liu H, Chu Y, Liu Y, Hayasaka T, Shao Z, Joshi N, Wang X, You Z, Lin L (2019) Label-free AC sensing by a graphene transistor for 100-ppb formaldehyde in air. In: IEEE MEMS, pp 607–610Google Scholar
  33. 33.
    Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON. Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides, Microchim Acta 185:213Google Scholar
  34. 34.
    Malik R, Tomer VK, Chaudhary V, Nehra SP, Duhan S (2018) Ordered mesoporous Ag-ZnO@g-CN nanohybrid as highly efficient bifunctional sensing material. Adv Mater Interfaces 5:1701357CrossRefGoogle Scholar
  35. 35.
    Malik R, Tomer VK, Chaudhary V, Dahiya MS, Sharma A, Nehra SP, Duhan S, Kailasam K (2017) An excellent humidity sensor based on in-SnO2 loaded mesoporous graphitic carbon nitride. J Mater Chem A 5:14134–14143CrossRefGoogle Scholar
  36. 36.
    Malik R, Tomer VK, Chaudhary V (2019) Chapter 16, Hybridized graphene for chemical sensing. In: Jawaid M, Bouhfid R, Qaiss AK (eds) Functionalized graphene nanocomposites and their derivatives. Elsevier, UK, pp 337–368.  https://doi.org/10.1016/b978-0-12-814548-7.00016-7
  37. 37.
    Malyi OI, Sopiha KV, Draxl C, Persson C (2017) Stability and electronic properties of phosphorene oxides: from 0-dimensional to amorphous 2-dimensional structures. Nanoscale 9:2428CrossRefGoogle Scholar
  38. 38.
    Ong WJ, Tan LL, Ng WH, Yong ST, Chai SP (2016) Graphitic carbon nitride (g-C3N4) based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116:7159CrossRefGoogle Scholar
  39. 39.
    Kailasam K, Epping JD, Thomas A, Losse S, Junge H (2011) Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy Environ Sci 4:4668CrossRefGoogle Scholar
  40. 40.
    Hollmann D, Karnahl M, Tschierlei S, Kailasam K, Schneider M, Radnik J, Grabow K, Bentrup U, Junge H, Beller M, Lochbrunner S, Thomas A, Brückner A (2014) Structure–activity relationships in bulk polymeric and sol–gel-derived carbon nitrides during photocatalytic hydrogen production. Chem Mater 26:1727CrossRefGoogle Scholar
  41. 41.
    Dong X, Cheng F (2015) Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications. J Mater Chem A 3:23642–23652CrossRefGoogle Scholar
  42. 42.
    Tomer VK, Malik R, Kailasam K (2017) Near room temperature ethanol detection using Ag-loaded mesoporous carbon nitrides. ACS Omega 2:3658–3668CrossRefGoogle Scholar
  43. 43.
    Tomer VK, Thangaraj N, Gahlot S, Kailasam K (2016) Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale 8:19794–19803CrossRefGoogle Scholar
  44. 44.
    Wu Y, Huang Q, Nie J, Liang J, Joshi N, Hayasaka T, Zhao S, Zhang M, Wang X, Lin L (2019) All carbon-based flexible humidity sensor. J Nanosci Nanotechnol 19:5310–5316CrossRefGoogle Scholar
  45. 45.
    Tomer VK, Duhan S (2016) Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors. J Mater Chem A 4:1033–1043CrossRefGoogle Scholar
  46. 46.
    Tomer VK, Devi S, Malik R, Nehra SP, Duhan S (2016) Highly sensitive and selective volatile organic amine (VOA) sensors using mesoporous WO3–SnO2 nanohybrids. Sens Actuators B 229:321–330CrossRefGoogle Scholar
  47. 47.
    Tomer VK, Duhan S (2016) A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens Actuators B 223:750–760CrossRefGoogle Scholar
  48. 48.
    Malik R, Tomer VK, Rana PS, Nehra SP, Duhan S (2015) Surfactant assisted hydrothermal synthesis of porous 3-D hierarchical SnO2 nanoflowers for photocatalytic degradation of Rose Bengal. Mater Lett 154:124–127CrossRefGoogle Scholar
  49. 49.
    Malik R, Chaudhary V, Rana PS, Tomer VK, Nehra SP, Duhan S (2016) Lanthanide ions doped-SnO2: a stable and efficient photocatalyst for dye decontamination. Energy Environ Focus 5:35–42CrossRefGoogle Scholar
  50. 50.
    Malik R, Tomer VK, Chaudhary V, Dahiya MS, Nehra SP, Duhan S, Kailasam K (2018) A low temperature, highly sensitive and fast response toluene gas sensor based on In(III)-SnO2 loaded cubic mesoporous graphitic carbon nitride. Sens Actuators B 255:3564–3575CrossRefGoogle Scholar
  51. 51.
    Tomer VK, Devi S, Malik R, Nehra SP, Duhan S (2016) Fast response with high performance humidity sensing of Ag-SnO2/SBA-15 nanohybrid sensors. Microporous Mesoporous Mater 219:240–248CrossRefGoogle Scholar
  52. 52.
    Kleitz F, Choi SH, Ryoo R (2003) Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun 2003:2136CrossRefGoogle Scholar
  53. 53.
    Malik R, Rana PS, Tomer VK, Chaudhary V, Nehra SP, Duhan S (2016) Visible light-driven mesoporous Au-TiO2/SiO2 photocatalysts for advanced oxidation process. Ceram Int 42:10892–10901CrossRefGoogle Scholar
  54. 54.
    Zhang D, Sun Y, Li P, Zhang Y (2016) Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl Mater Interfaces 8:14142CrossRefGoogle Scholar
  55. 55.
    Malik R, Tomer VK, Rana PS, Nehra SP, Duhan S (2015) Effect of annealing temperature on the photocatalytic performance of SnO2 nanoflowers towards degradation of Rhodamine B. Adv Sci Eng Med 7:448–456CrossRefGoogle Scholar
  56. 56.
    Malik R, Tomer VK, Rana PS, Nehra SP, Duhan S (2015) One-pot hydrothermal synthesis of porous SnO2 nanostructures for photocatalytic degradation or organic pollutants. Energy Environ Focus 4:340–345CrossRefGoogle Scholar
  57. 57.
    Tomer VK, Devi S, Malik R, Duhan S (2016) Chapter-7, Mesoporous materials & their nanocomposites. In: Nanomaterials and nanocomposites, Wiley-VCH Verlag, Germany, pp 223–254. ISBN 9783527337804. 10.1002/9783527683772.ch7Google Scholar
  58. 58.
    Duhan S, Tomer VK (2014) Chapter-6, mesoporous silica: making “Sense” of sensors. In: Advanced sensor and detection materials. Wiley-Scrivener, USA, pp 149–192.  https://doi.org/10.1002/9781118774038.ch6
  59. 59.
    Nepak D, Tomer VK, Kailasam K (2018) Chapter 3, Carbon Nitrides (g-C3N4) and Covalent Triazine Frameworks (CTFs). In: Metal-free functionalized carbons in catalysis: synthesis, characterization and applications. Royal Society of Chemistry, UK, pp 67–101.  https://doi.org/10.1039/9781788013116-00067
  60. 60.
    Tomer VK, Malik R, Jangra S, Nehra SP, Duhan S (2014) One pot direct synthesis of mesoporous SnO2/SBA-15 nano-composite by the hydrothermal method. Mater Lett 132:228–230CrossRefGoogle Scholar
  61. 61.
    Duhan S, Tomer VK, Sharma AK, Dehiya BS (2014) Development and properties Study of micro-structure silver-doped silica nanocomposites by chemical process. J Alloys Comp 583:550–553CrossRefGoogle Scholar
  62. 62.
    Duhan S, Dehiya BS, Tomer VK (2013) Microstructure and photo-catalytic dye degradation of silver- silica nano composites synthesized by sol-gel method. Adv Mater Lett 4:317–322CrossRefGoogle Scholar
  63. 63.
    Malik R, Tomer VK, Rana PS, Nehra SP, Duhan S (2016) Facile preparation of TiO2/ SnO2 catalysts using TiO2 as an auxiliary for gas sensing and advanced oxidation processes. MRS Adv 1(46):3157–3162CrossRefGoogle Scholar
  64. 64.
    Wang L, Wang S, Xu M, Hu X, Zhang H, Wang Y, Huang H (2013) A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys Chem Chem Phys 15:17179CrossRefGoogle Scholar
  65. 65.
    Duhan S, Tomer VK (2014) Chapter-7, Advance electronics: looking beyond silicon. In: Advanced energy materials”. Wiley-Scrivener, USA, pp 295–326.  https://doi.org/10.1002/9781118904923.ch7
  66. 66.
    Xu W, Li J, Sun J (2015) Fabrication of monodispersed hollow flower-like porous In2O3 nanostructures and their application as gas sensors. RSC Adv 5:81407CrossRefGoogle Scholar
  67. 67.
    Qi Q, Zhang T, Liu L, Zheng X (2009) Synthesis and toluene sensing properties of SnO2 nanofibers. Sens Actuators B 137:471CrossRefGoogle Scholar
  68. 68.
    Shorie M, Kumar V, Kaur H, Singh K, Tomer VK, Sabherwal P (2018) Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Microchim Acta 185:158CrossRefGoogle Scholar
  69. 69.
    Malik R, Chaudhary V, Tomer VK, Nehra SP (2017) Nanocasted synthesis of Ag/WO3 Nanocomposite With Enhanced Sensing And Photocatalysis Applications. Energy Environ Focus 6:43–48CrossRefGoogle Scholar
  70. 70.
    Malik R, Rana PS, Tomer VK, Chaudhary V, Nehra SP, Duhan S (2016) Nano gold supported on ordered mesoporous WO3/SBA-15 hybrid nanocomposite for oxidative decolorization of Azo dye. Microporous Mesoporous Mater 225:245–254CrossRefGoogle Scholar
  71. 71.
    Malik R, Chaudhary V, Rana PS, Tomer VK, Nehra SP, Duhan S (2016) Nanostructured WO3/SnO2 and TiO2/SnO2 heterojunction with enhanced photocatalytic activity. Energy Environ Focus 5:108–115CrossRefGoogle Scholar
  72. 72.
    Tomer VK, Duhan S (2015) Highly sensitive and stable relative humidity sensors based on WO3 modified mesoporous silica. Appl Phy Lett 106:063105CrossRefGoogle Scholar
  73. 73.
    Tomer VK, Duhan S, Sharma AK, Malik R, Jangra S, Nehra SP (2015) Devi S (2015) Humidity sensing properties of Ag0 nano particles supported WO3-SiO2 with super rapid response and excellent stability. Eur J Inorg Chem 31:5232–5240CrossRefGoogle Scholar
  74. 74.
    Malik R, Tomer VK (2018) Cubic mesoporous Pd-WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: Highly sensitive and temperature dependent VOCs sensors. J Mater Chem A 6:10718–10730CrossRefGoogle Scholar
  75. 75.
    Tomer VK, Malik R, Chaudhary V, Baruah A (2019) Chapter 14, Noble metals-metal oxide nanohybrids in humidity and gas sensing applications. In: Mohapatra S, Nguyen TA, Nguyen P (eds) Noble metal-metal oxide hybrid nanoparticles: fundamentals and applications. Woodhead Publishing, Elsevier, UK, pp 283–302.  https://doi.org/10.1016/b978-0-12-814134-2.00014-0
  76. 76.
    Poonia E, Duhan S, Kumar K, Kumar A, Jakhar S, Tomer VK (2019) One pot hydrothermal synthesis of ordered mesoporous SnO2/SBA-16 nanocomposites. J Porous Mater 26(2):553–560CrossRefGoogle Scholar
  77. 77.
    Jangra S, Chhokar V, Tomer VK, Sharma AK, Duhan S (2016) Influence of Functionalization Type on Controlled Release of Emodin from Mesoporous Silica. J Porous Mater 23:1047–1057CrossRefGoogle Scholar
  78. 78.
    Adhyapak PV, Meshram SP, Tomer VK, Amalnerkar D, Mulla IS (2013) Effect of preparation parameters on the morphologically induced photocatalytic activities of hierarchical zinc oxide nanostructures. Ceram Int 39:7367–7378CrossRefGoogle Scholar
  79. 79.
    Tomer VK, Duhan S (2015) Nano titania loaded mesoporous silica: preparation and application as high performance humidity sensor. Sens Actuators B 220:192–200CrossRefGoogle Scholar
  80. 80.
    Tomer VK, Duhan S, Adhyapak PV, Mulla IS (2015) Mn loaded mesoporous silica nanocomposite: a highly efficient humidity sensor. J Am Ceram Soc 98:741–747CrossRefGoogle Scholar
  81. 81.
    Tomer VK, Adhyapak PV, Duhan S, Mulla IS (2014) Humidity sensing properties of Ag-loaded mesoporous silica SBA-15 nano composites prepared via hydrothermal process. Microporous Mesoporous Mater 197:140–147CrossRefGoogle Scholar
  82. 82.
    Tomer VK, Duhan S, Malik R, Nehra SP, Devi S (2015) A novel highly sensitive humidity sensor based on ZnO/SBA-15 hybrid nanocomposite. J Am Ceram Soc 98:3719–3725CrossRefGoogle Scholar
  83. 83.
    Tomer VK, Jangra S, Malik R, Duhan S (2015) Effect of in-situ loading of nano Titania particles on structural ordering of mesoporous SBA-15 framework. Colloids Surf A Physicochem Engg Aspects 466:160–165CrossRefGoogle Scholar
  84. 84.
    Tomer VK, Duhan S, Sharma AK, Malik R, Nehra SP, Devi S (2015) One pot synthesis of mesoporous ZnO–SiO2 nanocomposite as high performance humidity sensor. Colloids Surf A Physchem Engg Asp 483:121–128CrossRefGoogle Scholar
  85. 85.
    Tomer VK, Duhan S (2015) In-situ synthesis of SnO2/SBA-15 hybrid nanocomposite as highly efficient humidity sensor. Sens Actuators B 212:517–525CrossRefGoogle Scholar
  86. 86.
    Malik R, Tomer VK, Chaudhary V, Dahiya MS, Rana PS, Nehra SP, Duhan S (2016) Facile synthesis of hybridized mesoporous Au@TiO2/SnO2 as efficient photocatalyst and selective VOC sensor. ChemistrySelect 1:3247–3258CrossRefGoogle Scholar
  87. 87.
    Poonia E, Mishra PK, Poonia V, Sangwan J, Kumar R, Rai PK, Malik R, Tomer VK, Ahuja R, Mishra YK (2019) Aero-gel based CeO2 nanoparticles: Synthesis, structural properties and detailed humidity sensing response. J Mater Chem C 7:5477–5487CrossRefGoogle Scholar
  88. 88.
    Poonia E, Mishra PK, Poonia V, Sangwan J, Kumar R, Rai PK, Tomer VK (2018) Aero-gel assisted synthesis of anatase TiO2 nanoparticles for humidity sensing applications. Dalton Trans 47:6293–6298CrossRefGoogle Scholar
  89. 89.
    Poonia E, Dahiya MS, Tomer VK, Kumar K, Kumar S, Duhan S (2018) Humidity sensing behavior of tin-loaded 3-D cubic mesoporous silica. Physica E 101:284–293CrossRefGoogle Scholar
  90. 90.
    Chaudhary V, Malik R, Tomer VK, Nehra SP, Duhan S (2016) Enhanced relative humidity sensing performance using TiO2 loaded SiO2 nanocomposite. Energy Environ Focus 5:234–239CrossRefGoogle Scholar
  91. 91.
    Chi X, Liu C, Liu L, Li Y, Wang Z, Bo X, Liu L, Su C (2014) Tungsten trioxide nanotubes with high sensitive and selective properties to acetone. Sens Actuators B 194:33CrossRefGoogle Scholar
  92. 92.
    Baruah A, Chaudhary V, Malik R, Tomer VK (2019) Chapter 17, Innovations in Nanotechnology for Wastewater Treatment. In: Ahsan A, Ismail AF (eds) Nanotechnology in water and wastewater treatment. Elsevier, UK, pp 323–338.  https://doi.org/10.1016/b978-0-12-813902-8.00017-4
  93. 93.
    Joshi N, Silva LF, Jadhav HS, Shimizu FM, Suman PH, M’Peko JC, Orlandi MO, Mastelaro VR, Oliveira ON (2018) Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sens Actuators B 257:906–915CrossRefGoogle Scholar
  94. 94.
    Joshi N, Silva LF, Jadhav H, M’Peko JC, Torres BBM, Aguir K, Mastelaro VR, Oliveira ON (2016) One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. RSC Adv 6:92655–92662CrossRefGoogle Scholar
  95. 95.
    Joshi N, Shimizu FM, Awan IT, M’Peko JC, Mastelaro VR, Oliveira ON, Silva LF (2016) Ozone sensing properties of nickel phthalocyanine: ZnO nanorod heterostructures. IEEE Sens: 1–3Google Scholar
  96. 96.
    Lai X, Shen G, Xue P, Yan B, Wang H, Li P, Xia W, Fang J (2015) Ordered mesoporous NiO with thin pore walls and its enhanced sensing performance for formaldehyde. Nanoscale 7:4005–4012CrossRefGoogle Scholar
  97. 97.
    Singh H, Tomer VK, Jena N, Bala I, Sharma N, Nepak D, Sarkar AD, Kailasam K, Pal SK (2017) A porous, crystalline truxene-based covalent organic frameworks and its applications in humidity sensing. J Mater Chem A 5:21820–21827CrossRefGoogle Scholar
  98. 98.
    Liu J, Li X, Chen X, Niu H, Han X, Zhang T, Lin H, Qu F (2016) Synthesis of SnO2/In2O3 hetero-nanotubes by coaxial-electrospinning method for enhanced formaldehyde response. New J Chem 40:1756–1764CrossRefGoogle Scholar
  99. 99.
    Zhang Y, Liu Q, Zhang J, Zhu Q, Zhu Z (2014) A highly sensitive and selective formaldehyde gas sensor using a molecular imprinting technique based on Ag–LaFeO3. J Mater Chem C 2:10067–10072CrossRefGoogle Scholar
  100. 100.
    Palke WE, Kirtman B (1988) The C-H bond energy of formaldehyde. Chem Phy Lett 148:202–204CrossRefGoogle Scholar
  101. 101.
    Wu YD, Wong CL, Chan KWK, Ji GZ, Jiang XK (1996) Substituent effects on the C−H bond dissociation energy of toluene. A density functional study. J Org Chem 61:746–750CrossRefGoogle Scholar
  102. 102.
    Bordwell FG, Harrelson JA (1990) Acidities and homolytic bond dissociation energies of the αC-H bonds in ketones in DMSO. Can J Chem 68(10):1714–1718CrossRefGoogle Scholar
  103. 103.
    Malik R, Tomer VK, Mishra YK, Lin L (2020) Functional gas sensing nanomaterials: a panoramic view. App Phys Rev 7:021301Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Prashant Kumar Mishra
    • 1
  • Ritu Malik
    • 2
  • Vijay K. Tomer
    • 2
    Email author
  • Nirav Joshi
    • 3
  1. 1.CFEES, DRDO, Ministry of Defence & Department of ChemistryUniversity of DelhiNew DelhiIndia
  2. 2.Berkeley Sensor & Actuator Center (BSAC)University of CaliforniaBerkeleyUSA
  3. 3.São Carlos Institute of Physics, University of São PauloSão PauloBrazil

Personalised recommendations