Advertisement

Application of Nanomaterials in Cancer Diagnosis, Drug Delivery, and Therapy

  • Shahid S. Siddiqui
  • Mashael Saeed Al-Qahtani
  • Faisal Ahmed Khalil Al Allaf
  • Loganathan Sivakumar
  • Zeba Kidwai Siddiqui
Chapter
  • 20 Downloads

Abstract

Cancer diagnostics and therapy has a lot to gain from advances in nanotechnology. Liposomes like nanoparticles can be loaded with probes and anti-cancer drugs to target cancer tissues. Drug delivery requires the specificity of targeting the cancer tissue; prolonged circulation of the nanoparticles in the blood; assessment of the tumor microenvironment (TME) and the controlled release of nanoparticles. This is particularly important from enhanced permeability and retention of nanomaterials, also known as the EPR effect. Thus, controlling the nanoparticles for different cancer types and in different formulations is critical. Efficacy and access of nanoparticles to the cancer cells may be monitored and regulated for specific tumor types that could lead to patient specific precision medicine. Hence, innovative nanotechnology can supplement existing molecular, cellular, and genetic techniques to study alterations across different cancer types, enabling the sorting of normal and malignant cells and tissues. For diagnostics, nanoparticle biosensors may be used in monitoring molecular signals specific to tumorigenesis, to assess tumor specific changes occurring in the malignant tissues. Here we also review novel nanotechnologies including the use of CRISPR/Cas9, CAR-T immunotherapy, and DNA and RNA nanotechnology studies in cancer theranostics design.

Keywords

Nanomaterials Nanoparticles CRISPR/Cas9 CAR-T Immunotherapy Cancer theranostics EPR Nanotechnology Nanomedicine Drug delivery Cancer therapy Spherical nucleic acids 

Notes

Acknowledgements

We are grateful to the stimulating conversations with our colleagues at University of Chicago (Everett Vokes; Ravi Salgia and Ezra Cohen) and invaluable discussions with the colleagues at UQUDENT. We regret not including excellent reviews and original articles in nanomedicine and cancer that could have been cited; due to the limited space allotted for this chapter. No conflict of interest or funding is reported in writing this chapter.

References

  1. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y et al (2013) Liposome: Classification, preparation, and applications. Nanoscale Res Lett 8:102–108Google Scholar
  2. Akinc A et al (2008) A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol 26:561–569Google Scholar
  3. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822Google Scholar
  4. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: From concept to clinical applications. Adv Drug Deliv Rev 65:36–48Google Scholar
  5. Anderson DG (2003) Lynn DM & Langer R Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew Chem Int Ed Engl 42:3153–3158Google Scholar
  6. Anzalone AV et al (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nat Vol 576:149–157Google Scholar
  7. Arranja AG, Pathak V, Lammers T, Shi Y (2017) Tumor-targeted nanomedicines for cancer theranostics. Pharmacol Res 115:87–95Google Scholar
  8. Banga RJ, Chernyak N, Narayan SP, Nguyen ST, Mirkin (2014) CA Liposomal spherical nucleic acids. J Am Chem Soc 136:9866–9869Google Scholar
  9. Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252Google Scholar
  10. Berlin Grace VM, Viswanathan S (2017) Pharmacokinetics and therapeutic efficiency of a novel cationic liposome nano-formulated all trans retinoic acid in lung cancer mice model. J Drug Deliv Sci Technol 39:223–236Google Scholar
  11. Bossa F, Latiano A, Rossi L et al (2008) Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: A randomized, controlled study. Am J Gastroenterol 103:2509–2516Google Scholar
  12. Bousmail D et al (2017) Precision spherical nucleic acids for delivery of anticancer drugs. Chem Sci (Camb) 8:6218–6229Google Scholar
  13. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866Google Scholar
  14. Calin GA, Sevignani C, Dan Dumitru C, Hyslop T, Noch E, Yendamuri S et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. P Natl Acad Sci USA 101(9):2999–3004Google Scholar
  15. Chi YH, Hsiao JK, Lin MH, Chang C, Lan CH, Wu HC (2017) Lung cancer-targeting peptides with multi-subtype indication for combinational drug delivery and molecular imaging. Theranostics 7:1612–1632Google Scholar
  16. Choi CHJ, Hao L, Narayan SP, Auyeung E, Mirkin CA (2013) Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc Natl Acad Sci USA 110:7625–7630Google Scholar
  17. Chou H, Lin H, Liu JM (2015) A tale of the two PEGylated liposomal doxorubicins. Onco Targets Ther 8:1719–1720Google Scholar
  18. Chu VT, Weber T, Wefers B, Wurst W, Sander S, Rajewsky K, Kü hn R. (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotechnol 33:543–548Google Scholar
  19. Cristiano MC, Cosco D, Celia C, Tudose A, Mare R, Paolino D, Fresta M (2017) Anticancer activity of all-trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surf B Biointerfaces 150:408–416Google Scholar
  20. Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA (2010) Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett 10:1477–1480Google Scholar
  21. Cutler JI et al (2011) Polyvalent nucleic acid nanostructures. J Am Chem Soc 133:9254–9257Google Scholar
  22. Cutler JI, Auyeung E, Mirkin CA (2012) Spherical nucleic acids. J Am Chem Soc 134:1376–1391Google Scholar
  23. Dar AA, Majid S, de Semir D, Nosrati M, Bezrookove V, Kashani-Sabet M (2011) miRNA-205 suppresses melanoma cell proliferation and induces senescence via regulation of E2F1 protein. J Biol Chem 286(19):16606–16614Google Scholar
  24. Davidson B, McCray P (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12:329–340Google Scholar
  25. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10:1028–1034Google Scholar
  26. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191Google Scholar
  27. Du Y, Chen B (2019) Combination of drugs and carriers in drug delivery technology and its development. Drug Des Devel Ther 13:1401–1408Google Scholar
  28. Favretto ME, Cluitmans JCA, Bosman GJCGM, Brock R (2013) Human erythrocytes as drug carriers: Loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes. J Control Release 170(3):343–351Google Scholar
  29. Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury LA et al (2010) eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci 107:14134–14139Google Scholar
  30. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451Google Scholar
  31. Goyal R, Macri LK, Kaplan HM, Kohn J (2016) Nanoparticles and nanofibers for topical drug delivery. J Control Release 240:77–92Google Scholar
  32. Gregoriadis G, Leathwood PD, Ryman BE (1971) Enzyme entrapment in liposomes. FEBS Lett 14:95–99Google Scholar
  33. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Gupta N, Patel B, Ahsan F et al (2014) Nano-engineered erythrocyte ghosts as inhalational carriers for delivery of fasudil: Preparation and characterization. Pharm Res 31(6):1553–1565Google Scholar
  34. Hardiansyah A, Huang L-Y, Yang M-C, Liu TY, Tsai SC, Yang CY, Kuo CY, Chan TY, Zou HM, Lian WN et al (2014) Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale Res Lett 9:497Google Scholar
  35. Ho TT, Zhou N, Huang J, Koirala P, Xu M, Fung R, Wu F, Mo YY (2015) Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 43:e17Google Scholar
  36. Hosseini ES, Nikkhah M, Hosseinkhani S (2019) Cholesterol-rich lipid-mediated nanoparticles boost of transfection efficiency, utilized for gene editing by CRISPR-Cas9. Int J Nanomedicine 14:4353–4366Google Scholar
  37. Hu CM, Fang RH, Zhang L (2012) Erythrocyte-inspired delivery systems. Adv Healthc Mater 1(5):537–547Google Scholar
  38. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iop gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433Google Scholar
  39. Iwai Y, Hamanishi J, Chamoto K, Honjo T (2017) Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci 24:26Google Scholar
  40. Jenkins RW, Barbie DA, Flaherty KT (2018) Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 118:9–16Google Scholar
  41. Jensen SA et al (2013) Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci Transl Med 5:209. ra152Google Scholar
  42. Jones MR, Seeman NC, Mirkin CA (2015) Nanomaterials. Programmable materials and the nature of the DNA bond. Science 347:1260901Google Scholar
  43. Karyampudi L, Lamichhane P, Krempski J, Kalli KR, Behrens MD, Vargas DM, Hartmann LC, Janco JM, Dong H, Hedin KE et al (2016) PD-1 blunts the function of ovarian tumor-infiltrating dendritic cells by inactivating NF-kappaB. Cancer Res 76:239–250Google Scholar
  44. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704Google Scholar
  45. Koonin EV, Krupovic M (2015) Evolution of adaptive immunity from transposable elements combined with innate immune systems. Nat Rev Genet 16:184–192Google Scholar
  46. La-Beck NM, Liu X, Wood LM (2019) Harnessing liposome interactions with the immune system for the next breakthrough in cancer drug delivery. Front Pharmacol 10:220.  https://doi.org/10.3389/fphar.2019.00220CrossRefGoogle Scholar
  47. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 50 cap. Nature 345:544–547Google Scholar
  48. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854Google Scholar
  49. Lee J-S, Lytton-Jean AKR, Hurst SJ, Mirkin CA (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115Google Scholar
  50. Legut M, Lipka D, Filipczak N, Piwoni A, Kozubek A, Gubernator J (2014) Anacardic acid enhances the anticancer activity of liposomal mitoxantrone towards melanoma cell lines – in vitro studies. Int J Nanomedicine 9:653–668Google Scholar
  51. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649Google Scholar
  52. Li J, Ai Y, Wang L et al (2016) Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 76:52–65Google Scholar
  53. Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: A review of the challenges and approaches. Drug Deliv 25(1):1234–1257Google Scholar
  54. Luk BT, Fang RH, Che-Ming J et al (2016) Safe and immunocompatible nanocarriers cloaked in RBC membranes for drug delivery to treat solid tumors. Theranostics 6(7):1004–1011Google Scholar
  55. Lytton-Jean AKR, Mirkin CA (2005) A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J Am Chem Soc 127:12754–12755Google Scholar
  56. Magnani M, Rossi L (2014) Approaches to erythrocyte-mediated drug delivery. Expert Opin Drug Deliv 11(5):677–687.  https://doi.org/10.1517/17425247.2014.889679CrossRefGoogle Scholar
  57. Mahalingam D, Nemunaitis JJ, Malik L, Sarantopoulos J, Weitman S, Sankhala K, Hart J, Kousba A, Gallegos NS, Anderson G et al (2014) Phase I study of intravenously administered ATI-1123, a liposomal docetaxel formulation in patients with advanced solid tumors. Cancer Chemother Pharmacol 74:1241–1250Google Scholar
  58. Milone MC, Bhoj VG (2018) The pharmacology of T cell therapies. Mol Ther Methods Clin Dev 8:210–221Google Scholar
  59. Minn I, Huss DJ, Ahn H-H, Chinn TM, Park A, Jones J, Brummet M, Rowe SP, Sysa-Shah P, Du Y, Levitsky HI, Pomper MG (2019) Imaging CAR T cell therapy with PSMA-targeted positron emission tomography. Sci Adv 5:eaaw5096Google Scholar
  60. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJA (1996) DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609Google Scholar
  61. Mitamura T, Watari H, Wang L, Kanno H, Hassan MK, Miyazaki M et al (2013) Downregulation of miRNA-31 induces taxane resistance in ovarian cancer cells through increase of receptor tyrosine kinase MET. Oncogene 2:e40Google Scholar
  62. Mock JN, Costyn LJ, Wilding SL, Arnold RD, Cummings BS (2013) Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer. Integr Biol 5:172–182Google Scholar
  63. Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly interspaced prokaryotic repeats derive from foreign generic elements. J Mol Evol 60:174–182Google Scholar
  64. Muthuraj B, Mukherjee S, Patra CR, Iyer PK (2016) Amplified fluorescence from polyfluorene nanoparticles with dual state emission and aggregation caused red shifted emission for live cell imaging and cancer theranostics. ACS Appl Mater Interfaces 8:32220–32229Google Scholar
  65. Nishida N, Yamashita S, Mimori K, Sudo T, Tanaka F, Shibata K et al (2012) MicroRNA-10b is a prognostic Indicator in colorectal Cancer and confers resistance to the chemotherapeutic agent 5-fluorouracil in colorectal Cancer cells. Ann Surg Oncol 19(9):3065–3071Google Scholar
  66. Oakes BL, Nadler DC, Flamholz A, Fellmann C, Staahl BT, Doudna JA, Savage DF (2016) Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol 34:646–651Google Scholar
  67. Oliveira Pinho J, Matias M, Gaspar MM (2019) Emergent nanotechnological strategies for systemic chemotherapy against melanoma. Nanomaterials (Basel) 9(10):1455Google Scholar
  68. Park SY et al (2008) DNA-programmable nanoparticle crystallization. Nature 451:553–556Google Scholar
  69. Patel PC et al (2010) Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjug Chem 21:2250–2256Google Scholar
  70. Peng Y, Croce C (2016) The role of MicroRNAs in human cancer. Sig Transduct Target Ther 1:15004Google Scholar
  71. Petre CE, Dittmer DP (2007) Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int J Nanomedicine 2:277–288Google Scholar
  72. Piao J-G, Wang L, Gao F, You Y-Z, Xiong Y, Yang L (2014) Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8:10414–10425Google Scholar
  73. Postow MA, Callahan MK, Wolchok JD (2015) Immune checkpoint blockade in cancer therapy. J Clin Oncol 33:1974–1982Google Scholar
  74. Proud CG (2018) Phosphorylation and signal transduction pathways in translational control. Cold Spring Harb Perspect Biol.  https://doi.org/10.1101/cshperspect.a033050
  75. Radovic-Moreno AF et al (2015) Immunomodulatory spherical nucleic acids. Proc Natl Acad Sci USA 112:3892–3897Google Scholar
  76. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191Google Scholar
  77. Robichaud N, Sonenberg N, Ruggero D, Schneider RJ (2019) Translational control in cancer. Cold Spring Harb Perspect Biol 11:a032896Google Scholar
  78. Rosi NL et al (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030Google Scholar
  79. Rui Y et al (2019) Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci Adv.  https://doi.org/10.1126/sciadv.aay3255
  80. Safra T (2003) Cardiac safety of liposomal anthracyclines. Oncologist 8:17–24Google Scholar
  81. Si W, Shen J, Zheng H et al (2019) The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenetics 11:25Google Scholar
  82. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88Google Scholar
  83. Somasundaram A, Burns TF (2017) The next generation of immunotherapy: Keeping lung cancer in check. J Hematol Oncol 10(1):87Google Scholar
  84. Song Y et al (2009) Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. Angew Chem Int Ed Engl 48:9143–9147Google Scholar
  85. Sprangers AJ, Hao L, Banga RJ, Mirkin CA (2017) Liposomal spherical nucleic acids for regulating long noncoding RNAs in the nucleus. Small 13:1602753Google Scholar
  86. Srivastava S, Riddell SR (2015) Engineering CAR-T cells: Design concepts. Trends Immunol 36(8):494–502Google Scholar
  87. Steegmaier M et al (2007) BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr Biol 17:316–322Google Scholar
  88. Sun Y, Su J, Liu G et al (2017) Advances of blood cell-based drug delivery systems. Eur J Pharm Sci 96:115–128Google Scholar
  89. Tan X et al (2016) Blurring the role of oligonucleotides: Spherical nucleic acids as a drug delivery vehicle. J Am Chem Soc 138:10834–10837Google Scholar
  90. Taylor C, Olszewska M, Borquez-Ojeda O, Qu J, Wasielewska T, He Q, Bernal Y, Chari R, Mali P, Moosburner M, Church GM (2015) Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12:823–826Google Scholar
  91. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR/Cas9 system. Science 343:80–84Google Scholar
  92. White MK, Kaminski R, Young W-B, Roehm PC, Khalili K (2017) CRISPR editing technology in biological and biomedical investigation. J Cell Biochem 118(11):3586–3594Google Scholar
  93. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862Google Scholar
  94. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, Doudna JA (2015) Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci USA 112:2984–2989Google Scholar
  95. Xu P, Wang R, Wang X, Ouyang J (2016) Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther 9:2873–2884Google Scholar
  96. Yamankurt G, Berns EJ, Xue A et al (2019) Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat Biomed Eng 3(4):318–327Google Scholar
  97. Yap TA, Gerlinger M, Futreal PA, Pusztai L, Swanton C (2012) Intratumor heterogeneity: seeing the wood for the trees. Sci Transl Med 4(127):10Google Scholar
  98. Yin H, Xue W, Anderson DG (2019) CRISPR–Cas: A tool for cancer research and therapeutics. Nat Rev Clin Oncol 16:281–295Google Scholar
  99. Young KL et al (2012) Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells. Nano Lett 12:3867–3871Google Scholar
  100. Zetsche B, Volz SE, Zhang F (2015) A split Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33:139–142Google Scholar
  101. Zhen S, Li X (2019) Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther.  https://doi.org/10.1038/s41417-019-0141-7
  102. Zhou J, Zhao W-Y, Ma X, Ju RJ, Li XY, Li N, Sun MG, Shi JF, Zhang CX, Lu WL (2013) The anticancer efficacy of paclitaxel liposomes modified with mitochondrial targeting conjugate in resistant lung cancer. Biomaterials 34:3626–3638Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shahid S. Siddiqui
    • 1
    • 2
    • 3
  • Mashael Saeed Al-Qahtani
    • 2
  • Faisal Ahmed Khalil Al Allaf
    • 3
  • Loganathan Sivakumar
    • 1
    • 4
  • Zeba Kidwai Siddiqui
    • 5
  1. 1.Department of MedicineUniversity of ChicagoChicagoUSA
  2. 2.Department of Basic and Clinical Oral SciencesFaculty of Dentistry, Umm Al Qura UniversityMakkahSaudi Arabia
  3. 3.Department of Medical GeneticsFaculty of Medicine, Umm Al Qura UniversityMakkahSaudi Arabia
  4. 4.Department of Environmental SciencePeriyar UniversitySalemIndia
  5. 5.McGenome LLCGlenviewUSA

Personalised recommendations