Characterization of Nanomaterials: Techniques and Tools

  • Sultan AkhtarEmail author
  • Sadaqat Ali


Nanomaterials have shown excellent physical, electrical, and chemical properties compared to when they are in the bulk phase. Nanotechnology/biotechnology is dealing with synthesis, characterization, and applications of nanomaterials. The nanoscale materials contained tiny particles, often known as nanoparticles and they require special instrumentations and tools for their successful characterization and analysis. In this chapter, we will describe briefly the tools and techniques which are widely used for the characterization of nanomaterials. These techniques include but not limited to scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, thermal gravimetric analysis (TGA), dynamic light scattering (DLS) analysis, density functional theory (DFT), zeta sizer, etc. The illustration of each technique and some cases with graphics is provided in a separate section.


Techniques Tools Scanning electron microscopy Transmission electron microscopy Fourier transform infrared spectroscopy X-ray diffraction Energy-dispersive X-ray spectroscopy Thermal gravimetric analysis Dynamic light scattering analysis Density functional theory Zeta sizer 


  1. Abd Mutalib M et al (2017) Chapter 9–Scanning electron microscopy (SEM) and energy-dispersive X-Ray (EDX) spectroscopy. In: Hilal N et al (eds) Membrane characterization. Elsevier, Amsterdam, Netherlands, pp 161–179CrossRefGoogle Scholar
  2. AbuMousa RA et al (2018) Photo-catalytic killing of hela cancer cells using facile synthesized pure and Ag loaded WO3 nanoparticles. Sci Rep 8(1)Google Scholar
  3. Akhtar S (2012) Transmission electron microscopy of graphene and hydrated biomaterial nanostructures: novel techniques and analysis. Uppsala University [urn:nbn:se:uu:diva:171991].
  4. Akhtar S et al (2018) Enhancement of anticorrosion property of 304 stainless steel using silane coatings. Appl Surf Sci 440:1286–1297CrossRefGoogle Scholar
  5. Akhtar S, Rehman S, Almessiere MA, Khan FA, Slimani Y, Baykal A (2019) Synthesis of Mn0.5Zn0.5SmxEuxFe1.8-2xO4 nanoparticles via the hydrothermal approach induced anti-cancer and anti-bacterial activities. Nanomat (Basel) 9(11):1635. Published 18 Nov 2019
  6. Akita K, Kase M (1967) Determination of kinetic parameters for pyrolysis of cellulose and cellulose treated with ammonium phosphate by differential thermal analysis and thermal gravimetric analysis. J Polym Sci A‐1 Polym Chem 5:833–848.
  7. Alkan C et al (2009) Preparation, characterization, and thermal properties of microencapsulated phase change material for thermal energy storage. Solar Energy Materials and Solar Cells 93(1):143–147Google Scholar
  8. Alomari M, Jermy BR, Ravinayagam V, Akhtar S, Almofty SA, Rehman S et al (2019) Cisplatin-functionalized three-dimensional magnetic SBA-16 for treating breast cancer cells (MCF-7). Artif cells Nanomed Biotechnol 47(1):3079–3086. Scholar
  9. Assadi MHN et al (2013) Theoretical study on copper’s energetics and magnetism in TiO2 polymorphs. J Appl Phys 113(23):233913–233913-5. arXiv:1304.1854. Scholar
  10. Baig U et al (2019) Facile synthesis, characterization of nano-tungsten trioxide decorated with silver nanoparticles and their antibacterial activity against water-borne gram-negative pathogens. Appl Nanosci 10(3):851–860CrossRefGoogle Scholar
  11. Block ID, Scheffold F (2010) Modulated 3D cross-correlation light scattering: improving turbid sample characterization. Rev Sci Instrum 81:123107–123107-7.Google Scholar
  12. Carr KE, Toner PG (1981) Scanning electron microscopy in biomedical research and routine pathology. J Microsc 123:147–159. Scholar
  13. Chu B (1970) Laser light scattering. Annu Rev Phys Chem 21(1):145–174. Scholar
  14. Dukhin AS, Goetz PJ (2017) Characterization of liquids, nano- and micro- particulates and porous bodies using Ultrasound, Elsevier. ISBN 978-0-444-63908-0Google Scholar
  15. El-Sayed SA, Mostafa ME (2014) Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Conversion and Management 85:165–172Google Scholar
  16. Fera A, He Q, Zhang G, Leapman RD (2020) Quantitative method for estimating stain density in electron microscopy of conventionally prepared biological specimens. J Microsc 277(2):71–78. Scholar
  17. Freitas C, Müller RH (1998) Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN™) dispersions. Int J Pharm 168(2):221–229. Scholar
  18. Gad MM et al (2019) Reinforcement of PMMA denture base material with a mixture of ZrO2 nanoparticles and glass fibers. Int J Dentis 2019:2489393CrossRefGoogle Scholar
  19. Goodman J (1976) Some fundamental properties of speckle. J Opt Soc Am 66(11):1145–1150. Scholar
  20. Guler B, Uraz A, Çetiner D (2019) The chemical surface evaluation of black and white porous titanium granules and different commercial dental implants with energy-dispersive x-ray spectroscopy analysis. Clin Implant Dent Relat Res 21:352–359. Scholar
  21. Hsieh CE, Leith A, Mannella CA, Frank J, Marko M (2006) Towards high-resolution three-dimensional imaging of native mammalian tissue: electron tomography of frozen-hydrated rat liver sections. J Struct Biol 153(1):1–13. Scholar
  22. Hanaor DAH, Assadi MHN, Li S, Yu A, Sorrell CC (2012) Ab initio study of phase stability in doped TiO2. Comput Mech 50(2):185–194. arXiv:1210.7555. Scholar
  23. Haris PI, Severcan F (1999) FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J.Mol Cata B: Enzym 7(1):207–221CrossRefGoogle Scholar
  24. Hohenberg P, Walter K (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871. Scholar
  25. Honary S, Zahir F (2013) Effect of zeta potential on the properties of nano-drug delivery systems-a review (part 1). Trop J Pharm Res 12(2):255–264Google Scholar
  26. Hung GWC, Autian J (1972) Use of thermal gravimetric analysis in sorption studies II: evaluation of diffusivity and solubility of a series of aliphatic alcohols in polyurethan. J Pharm Sci 61:1094–1098. Scholar
  27. Jermy BR, Alomari M, Ravinayagam V, Almofty SA, Akhtar S, Borgio JF, AbdulAzeez S (2019) SPIONs/3D SiSBA-16 based multifunctional nanoformulation for target specific cisplatin release in colon and cervical cancer cell lines. Sci Rep 9(1).
  28. Kinoshita H et al (2013) Application of energy dispersive X-ray fluorescence spectrometry (EDX) in a case of methomyl ingestion. Forensic Sci Int 227(1):103–105CrossRefGoogle Scholar
  29. Kirby BJ (2010) Micro- and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press. ISBN 978-0-521-11903-0
  30. Kumar A, Dixit CK (2017) Methods for characterization of nanoparticles. Adv Nanomed Delivery Ther Nucleic Acids:43–58. ISBN 9780081005576
  31. Levy M (1979) Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc Natl Acad Sci 76(12):6062–6065. PMC 411802. PMID 16592733CrossRefGoogle Scholar
  32. Li D (2004) Chapter 10 Microfluidic methods for measuring zeta potential. Interface Sci Technol 2:617–640CrossRefGoogle Scholar
  33. Lyklema J (1995) Fundamentals of interface and colloid science, vol. 2, p 3.208. ISBN 0-12-460529-XGoogle Scholar
  34. Marko M, Hsieh C, Moberlychan W, Mannella CA, Frank J (2006) Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J Microsc (Oxford) 222:42–47. Scholar
  35. Marko M, Hsieh C, Schalek R, Frank J, Mannella C (2007) Focused-ion-beam thinning of frozen-hydrated biological specimens for cryo-electron microscopy. Nat Methods 4(3):215–217. Scholar
  36. Marotta R, Falqui A, Curcio A, Quarta A, Pellegrino T (2013) Immunocytochemistry, electron tomography, and energy dispersive X-ray spectroscopy (EDXS) on cryosections of human cancer cells doped with stimuli responsive polymeric nanogels loaded with iron oxide nanoparticles. In: Bergese P, Hamad-Schifferli K (eds) Nanomaterial interfaces in biology, Methods in molecular biology: methods and protocols, vol 1025. Humana Press, Totowa, NJCrossRefGoogle Scholar
  37. Misture ST, Snyder RL (2001) X-ray Diffraction. In: Buschow KHJ et al (eds) Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 9799–9808.
  38. Pecora R (1964) Doppler shifts in light scattering from pure liquids and polymer solutions. J Chem Phys 40(6):1604.
  39. Pusey PN (1999) Suppression of multiple scattering by photon cross-correlation techniques. Curr Opin Colloid Interface Sci 4(3):177–185. Scholar
  40. Rubino S, Akhtar S, Melin P, Searle A, Spellward P, Leifer K (2012) A site-specific focused-ion-beam lift-out method for cryo transmission electron microscopy. J Struct Biol 180:572–576CrossRefGoogle Scholar
  41. Russel WB, Saville DA, Schowalter WR (1992) Colloidal dispersions, Cambridge University Press. ISBN 0-521-42600-6Google Scholar
  42. Sabareesh KPV, Jena SS, Tata BVR (2006) Dynamic light scattering studies on photo polymerized and chemically cross-linked polyacrylamide hydrogels. AIP Conf Proc 832(1):307–310. Bibcode:2006AIPC..832..307S. ISSN 0094-243XCrossRefGoogle Scholar
  43. Schaetzel K (1991) Suppression of multiple-scattering by photon cross-correlation techniques (PDF). J Mod Opt 38:1849. Bibcode:1990JPCM….2..393S. Accessed 7 Apr 2014.
  44. Schatzel K, Drewel M, Ahrens J (1990) Suppression of multiple scattering in photon correlation spectroscopy. J Phys Condens Matter 2:SA393CrossRefGoogle Scholar
  45. Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E (2018) Energy dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochem 62(1):2841. Published 15 Mar 2018
  46. Shah R, Eldridge D, Palombo E, Harding I (2014) Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J Phys Sci 25(1).
  47. Sidhartha JS, Joshi HM, Sabareesh KPV, Tata BVR, Rao TS (2006) Dynamics of deinococcus radiodurans under controlled growth conditions. Biophys J 91(7):2699–2707. Bibcode:2006BpJ….91.2699J. PMC 1562370. PMID 16829564CrossRefGoogle Scholar
  48. Soliman AAA, El-Shinnawy NA, Mobarak F (1997) Thermal behaviour of starch and oxidized starch. Thermochim Acta 296(1):149–153CrossRefGoogle Scholar
  49. Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8(4):409–427. Scholar
  50. Talari ACS, Garcia Martinez MA, Movasaghi Z, Rehman S, Ur Rehman I (2016) Advances in Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 52:456–506. Published online: 14 Oct 2016CrossRefGoogle Scholar
  51. Tkatchenko A, Scheffler M (2009) Accurate molecular Van Der Waals interactions from ground-state electron density and free-atom reference data. Phys Rev Lett 102(7):073005. PMID 19257665CrossRefGoogle Scholar
  52. Urban C, Schurtenberger P (1998) Characterization of turbid colloidal suspensions using light scattering techniques combined with cross-correlation methods. J Colloid Interface Sci 207:150Google Scholar
  53. Utsunomiya S, Ewing RC (2003) Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. Environ Sci Technol 37(4):786–791CrossRefGoogle Scholar
  54. Van Mourik T, Gdanitz RJ (2002) A critical note on density functional theory studies on rare-gas dimers. J Chem Phys 116(22):9620–9623. Scholar
  55. Vizintin A et al (2020) Poly(phenanthrene quinone)/graphene cathode material and investigation of its redox mechanism through operando ATR-IR spectroscopy in Li- and Mg- batteries. ChemSusChem 13Google Scholar
  56. Vondrášek J, Bendová L, Klusák V, Hobza P (2005) Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations. J Am Chem Soc 127(8):2615–2619. PMID 15725017CrossRefGoogle Scholar
  57. Weng W, Baumann F, Ke Y, Loesing R, Madan A, Zhu Z, Katnani A (2015) Practical considerations in quantitative nanoscale energy-dispersive X-ray spectroscopy (EDX) and its application in SiGe. Microsc Microanal 21(S3):1087–1088. Scholar
  58. Williams DB, Crater CB (2009) Transmission electron microscopy: a textbook for materials science. Springer: The University of Alabama, Huntsville AL, p 14CrossRefGoogle Scholar
  59. Winter M et al (1999) FTIR and DEMS investigations on the electroreduction of chloroethylene carbonate-based electrolyte solutions for lithium-ion cells. J Power Sources 81-82:818–823CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of BiophysicsInstitute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU)DammamSaudi Arabia
  2. 2.Mechanical and Energy Engineering Department, College of EngineeringImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations