Advertisement

Application of Nanomaterials in Treatment of Endocrine Diseases

  • Khulood M. Al-KhaterEmail author
  • Ebtesam A. Al-Suhaimi
Chapter
  • 48 Downloads

Abstract

The endocrine system is very essential to maintain body homeostasis. Disturbance of endocrine function leads to well-established diseases; such as diabetes mellitus, thyroid and parathyroid disorders, infertility, and obesity. There is no absolute cure for these diseases; however, current treatment aims to monitor them and prevent their further progression. Scientists are working hardly to find better treatment strategies for endocrine disorders. Nanotechnology holds a great promise in finding solutions to these diseases, and this field is advancing very rapidly because of the targeted type of drug delivery, and hence, it reduced the side effects of the current medications. This chapter highlights the current state of researches concerning the use of nanotechnology in managing three examples of endocrine diseases: thyroid dysfunction, diabetes mellitus, and obesity. For example, nanotechnology has been implemented in finding non-invasive routes of insulin delivery such as oral, nasal, or transdermal routes. Glucose nanosensors have been invented in order to improve the accuracy of detection of serum glucose. It is important to emphasize that this field of research is still in the preclinical stage and more work is needed to provide evidence of its safety. Immune response and toxicity are the main issues that concern researchers when using nanotechnology.

Keywords

Nanotechnology Nanoparticles Thyroid disease Diabetes mellitus Obesity Toxicity Glucose biosensor Oral insulin Smart insulin 

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, Marczak L, Mokdad AH, Moradi-Lakeh M, Naghavi M, Salama JS, Vos T, Abate KH, Abbafati C, Ahmed MB, Al-Aly Z, Alkerwi A, Al-Raddadi R, Amare AT, Amberbir A, Amegah AK, Amini E, Amrock SM, Anjana RM, Ärnlöv J, Asayesh H, Banerjee A, Barac A, Baye E, Bennett DA, Beyene AS, Biadgilign S, Biryukov S, Bjertness E, Boneya DJ, Campos-Nonato I, Carrero JJ, Cecilio P, Cercy K, Ciobanu LG, Cornaby L, Damtew SA, Dandona L, Dandona R, Dharmaratne SD, Duncan BB, Eshrati B, Esteghamati A, Feigin VL, Fernandes JC, Fürst T, Gebrehiwot TT, Gold A, Gona PN, Goto A, Habtewold TD, Hadush KT, Hafezi-Nejad N, Hay SI, Horino M, Islami F, Kamal R, Kasaeian A, Katikireddi SV, Kengne AP, Kesavachandran CN, Khader YS, Khang YH, Khubchandani J, Kim D, Kim YJ, Kinfu Y, Kosen S, Ku T, Defo BK, Kumar GA, Larson HJ, Leinsalu M, Liang X, Lim SS, Liu P, Lopez AD, Lozano R, Majeed A, Malekzadeh R, Malta DC, Mazidi M, McAlinden C, McGarvey ST, Mengistu DT, Mensah GA, Mensink GBM, Mezgebe HB, Mirrakhimov EM, Mueller UO, Noubiap JJ, Obermeyer CM, Ogbo FA, Owolabi MO, Patton GC, Pourmalek F, Qorbani M, Rafay A, Rai RK, Ranabhat CL, Reinig N, Safiri S, Salomon JA, Sanabria JR, Santos IS, Sartorius B, Sawhney M, Schmidhuber J, Schutte AE, Schmidt MI, Sepanlou SG, Shamsizadeh M, Sheikhbahaei S, Shin MJ, Shiri R, Shiue I, Roba HS, Silva DAS, Silverberg JI, Singh JA, Stranges S, Swaminathan S, Tabarés-Seisdedos R, Tadese F, Tedla BA, Tegegne BS, Terkawi AS, Thakur JS, Tonelli M, Topor-Madry R, Tyrovolas S, Ukwaja KN, Uthman OA, Vaezghasemi M, Vasankari T, Vlassov VV, Vollset SE, Weiderpass E, Werdecker A, Wesana J, Westerman R, Yano Y, Yonemoto N, Yonga G, Zaidi Z, Zenebe ZM, Zipkin B, Murray CJL, Collaborators GO (2017) Health effects of overweight, obesity in 195 countries over 25 years. N Engl J Med 377(1):13–27Google Scholar
  2. Al Dawish MA, Robert AA, Braham R, Al Hayek AA, Al Saeed A, Ahmed RA, Al Sabaan FS (2016) Diabetes mellitus in Saudi Arabia: a review of the recent literature. Curr Diabetes Rev 12(4):359–368Google Scholar
  3. Al-Nozha MM, Al-Mazrou YY, Al-Maatouq MA, Arafah MR, Khalil MZ, Khan NB, Al-Marzouki K, Abdullah MA, Al-Khadra AH, Al-Harthi SS, Al-Shahid MS, Al-Mobeireek A, Nouh MS (2005) Obesity in Saudi Arabia. Saudi Med J 26(5):824–829Google Scholar
  4. Ash GI, Kim D, Choudhury M (2019) Promises of nanotherapeutics in obesity. Trends Endocrinol Metab 30(6):369–383Google Scholar
  5. Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80(5):2016–2022Google Scholar
  6. Bakhru SH, Furtado S, Morello AP, Mathiowitz E (2013) Oral delivery of proteins by biodegradable nanoparticles. Adv Drug Deliv Rev 65(6):811–821Google Scholar
  7. Ballinger A, Peikin SR (2002) Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol 440(2–3):109–117Google Scholar
  8. Barnett D, Tassopoulos CN, Fraser TR (1969) Breath acetone and blood sugar measurements in diabetes. Clin Sci 37(2):570Google Scholar
  9. Barone PW, Strano MS (2009) Single walled carbon nanotubes as reporters for the optical detection of glucose. J Diabetes Sci Technol 3(2):242–252Google Scholar
  10. Bendo L, Casanova M, Figueira AC, Polikarpov I, Zucolotto V (2014) Nanostructured sensors containing immobilized nuclear receptors for thyroid hormone detection. J Biomed Nanotechnol 10(5):744–750Google Scholar
  11. Bi R, Shao W, Wang Q, Zhang N (2009) Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery. J Biomed Nanotechnol 5(1):84–92Google Scholar
  12. Blaikie FH, Brown SE, Samuelsson LM, Brand MD, Smith RA, Murphy MP (2006) Targeting dinitrophenol to mitochondria: limitations to the development of a self-limiting mitochondrial protonophore. Biosci Rep 26(3):231–243Google Scholar
  13. Brownlee M, Cerami A (1979) A glucose-controlled insulin-delivery system: semisynthetic insulin bound to lectin. Science 206(4423):1190–1191Google Scholar
  14. Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18(4):478–489Google Scholar
  15. Cappon G, Vettoretti M, Sparacino G, Facchinetti A (2019) Continuous glucose monitoring sensors for diabetes management: a review of technologies and applications. Diabetes Metab J 43(4):383–397Google Scholar
  16. Carino GP, Jacob JS, Mathiowitz E (2000) Nanosphere based oral insulin delivery. J Control Release 65(1–2):261–269Google Scholar
  17. Cash KJ, Clark HA (2010) Nanosensors and nanomaterials for monitoring glucose in diabetes. Trends Mol Med 16(12):584–593Google Scholar
  18. Cawley J, Meyerhoefer C (2012) The medical care costs of obesity: an instrumental variables approach. J Health Econ 31(1):219–230Google Scholar
  19. Chakraborty S, Banerjee D, Ray I, Sen A (2008) Detection of biomarker in breath: a step towards noninvasive diabetes monitoring. Curr Sci 94(2):237–242Google Scholar
  20. Chen X, Zhu H, Huang X, Wang P, Zhang F, Li W, Chen G, Chen B (2017) Novel iodinated gold nanoclusters for precise diagnosis of thyroid cancer. Nanoscale 9(6):2219–2231Google Scholar
  21. Choi WI, Lee JH, Kim JY, Kim JC, Kim YH, Tae G (2012) Efficient skin permeation of soluble proteins via flexible and functional nano-carrier. J Control Release 157(2):272–278Google Scholar
  22. Chuang EY, Lin KJ, Su FY, Chen HL, Maiti B, Ho YC, Yen TC, Panda N, Sung HW (2013) Calcium depletion-mediated protease inhibition and apical-junctional-complex disassembly via an EGTA-conjugated carrier for oral insulin delivery. J Control Release 169(3):296–305Google Scholar
  23. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45Google Scholar
  24. Crofford OB, Mallard RE, Winton RE, Rogers NL, Jackson JC, Keller U (1977) Acetone in breath and blood. Trans Am Clin Climatol Assoc 88:128–139Google Scholar
  25. Cui Y, Chen H, Hou L, Zhang B, Liu B, Chen G, Tang D (2012) Nanogold-polyaniline-nanogold microspheres-functionalized molecular tags for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Anal Chim Acta 738:76–84Google Scholar
  26. Di J, Price J, Gu X, Jiang X, Jing Y, Gu Z (2014) Ultrasound-triggered regulation of blood glucose levels using injectable nano-network. Adv Healthc Mater 3(6):811–816Google Scholar
  27. Diabetes Overview—Symptoms, Causes, Treatment (2019). Available at: https://www.diabetes.org/diabetes.
  28. DiSanto RM, Subramanian V, Gu Z (2015) Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7(4):548–564Google Scholar
  29. Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Asp Med 25(4):365–451Google Scholar
  30. Eid S, HM E-Z, SS E, OA F, ML M (2019) Nano selenium treatment effects on thyroid hormones, immunity and antioxidant status in rabbits. World Rabbit Sci 27:93–100Google Scholar
  31. Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M (2019) Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 139:116–138Google Scholar
  32. Fernández-Urrusuno R, Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ (1999) Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharm Res 16(10):1576–1581Google Scholar
  33. Ferreira DC, Reis LP, Lopes NV (2017) A nanocommunication system for endocrine diseases. Clust Comput 20:689–706Google Scholar
  34. Fleige E, Quadir MA, Haag R (2012) Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Deliv Rev 64(9):866–884Google Scholar
  35. Friedman JM (2009) Obesity: causes and control of excess body fat. Nature 459(7245):340–342Google Scholar
  36. Functional Nanomaterials Lab—3SINC 2014 and Solid State Lighting Program Workshop (2019). Available at: https://funl.kaust.edu.sa/Pages/3rd%20Saudi%20International%20Nanotechnology%20Conference%20and%20workshops%20(3SINC%202014).aspx.
  37. Gates RJ, Hunt MI, Smith R, Lazarus NR (1972) Return to normal of blood-glucose, plasma-insulin, and weight gain in New Zealand obese mice after implantation of islets of Langerhans. Lancet 2(7777):567–570Google Scholar
  38. Gregg EW, Shaw JE (2017) Global health effects of overweight and obesity. N Engl J Med 377(1):80–81Google Scholar
  39. Gu Z, Aimetti AA, Wang Q, Dang TT, Zhang Y, Veiseh O, Cheng H, Langer RS, Anderson DG (2013a) Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 7(5):4194–4201Google Scholar
  40. Gu Z, Dang TT, Ma M, Tang BC, Cheng H, Jiang S, Dong Y, Zhang Y, Anderson DG (2013b) Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7(8):6758–6766Google Scholar
  41. Gu J, Wang J, Nie X, Wang W, Shang J (2015) Potential role for carbon nanoparticles identification and preservation in situ of parathyroid glands during total thyroidectomy and central compartment node dissection. Int J Clin Exp Med 8(6):9640–9648Google Scholar
  42. Higaki M, Kameyama M, Udagawa M, Ueno Y, Yamaguchi Y, Igarashi R, Ishihara T, Mizushima Y (2006) Transdermal delivery of CaCO3-nanoparticles containing insulin. Diabetes Technol Ther 8(3):369–374Google Scholar
  43. Hossen MN, Kajimoto K, Akita H, Hyodo M, Ishitsuka T, Harashima H (2010) Ligand-based targeted delivery of a peptide modified nanocarrier to endothelial cells in adipose tissue. J Control Release 147(2):261–268Google Scholar
  44. Hossen N, Kajimoto K, Akita H, Hyodo M, Harashima H (2013) A comparative study between nanoparticle-targeted therapeutics and bioconjugates as obesity medication. J Control Release 171(2):104–112Google Scholar
  45. Huang Z, Li Z, Chen R, Chen G, Lin D, Xi G, Chen Y, Lin H, Lei J (2011) The application of silver nanoparticle based SERS in diagnosing thyroid tissue. J Phys Conf Ser 27:012014Google Scholar
  46. Huhtinen P, Pelkkikangas AM, Jaakohuhta S, Lövgren T, Härmä H (2004) Quantitative, rapid europium(III) nanoparticle-label-based all-in-one dry-reagent immunoassay for thyroid-stimulating hormone. Clin Chem 50(10):1935–1936Google Scholar
  47. Hussain AM, Sarangi SN, Kesarwani JA, Sahu SN (2011) Au-nanocluster emission based glucose sensing. Biosens Bioelectron 29(1):60–65Google Scholar
  48. Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25(6):1402–1407Google Scholar
  49. Jiang C, Cano-Vega MA, Yue F, Kuang L, Narayanan N, Uzunalli G, Merkel MP, Kuang S, Deng M (2017) Dibenzazepine-loaded nanoparticles induce local browning of white adipose tissue to counteract obesity. Mol Ther 25(7):1718–1729Google Scholar
  50. Kelly T, Yang W, Chen CS, Reynolds K, He J (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes 32(9):1431–1437Google Scholar
  51. Kesharwani P, Gorain B, Low SY, Tan SA, Ling ECS, Lim YK, Chin CM, Lee PY, Lee CM, Ooi CH, Choudhury H, Pandey M (2018) Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res Clin Pract 136:52–77Google Scholar
  52. Ko KS, Lee M, Koh JJ, Kim SW (2001) Combined administration of plasmids encoding IL-4 and IL-10 prevents the development of autoimmune diabetes in nonobese diabetic mice. Mol Ther 4(4):313–316Google Scholar
  53. Kolonin MG, Saha PK, Chan L, Pasqualini R, Arap W (2004) Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10(6):625–632Google Scholar
  54. Kozlovskaya V, Zavgorodnya O, Chen Y, Ellis K, Tse HM, Cui W, Thompson JA, Kharlampieva E (2012) Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv Funct Mater 22(16):3389–3398Google Scholar
  55. Lanza RP, Hayes JL, Chick WL (1996) Encapsulated cell technology. Nat Biotechnol 14(9):1107–1111Google Scholar
  56. Laurent D, Vinet L, Lamprianou S, Daval M, Filhoulaud G, Ktorza A, Wang H, Sewing S, Juretschke HP, Glombik H, Meda P, Boisgard R, Nguyen DL, Stasiuk GJ, Long NJ, Montet X, Hecht P, Kramer W, Rutter GA, Hecksher-Sørensen J (2016) Pancreatic β-cell imaging in humans: fiction or option? Diabetes Obes Metab 18(1):6–15Google Scholar
  57. Lee SH, Lee H, Park JS, Choi H, Han KY, Seo HS, Ahn KY, Han SS, Cho Y, Lee KH, Lee J (2007) A novel approach to ultrasensitive diagnosis using supramolecular protein nanoparticles. FASEB J 21(7):1324–1334Google Scholar
  58. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210(4472):908–910Google Scholar
  59. Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8(1):146–152Google Scholar
  60. Lin J, He C, Zhao Y, Zhang S (2009) One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sensors Actuators B 137(2):768–773Google Scholar
  61. Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, Zhang Q, He Q, Zhang Z (2008) Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 356(1–2):333–344Google Scholar
  62. Liu J, Shen W, Zhao B, Wang Y, Wertz K, Weber P, Zhang P (2009) Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv Drug Deliv Rev 61(14):1343–1352Google Scholar
  63. Lopez RF, Seto JE, Blankschtein D, Langer R (2011) Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate. Biomaterials 32(3):933–941Google Scholar
  64. Lu Y, Aimetti AA, Langer R, Gu Z (2016) Bioresponsive materials. Nat Rev Mater 2(1):16075Google Scholar
  65. Ma Z, Lim TM, Lim LY (2005) Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. Int J Pharm 293(1–2):271–280Google Scholar
  66. Malik VS, Willett WC, Hu FB (2013) Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol 9(1):13–27Google Scholar
  67. Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A 109(40):16288–16293Google Scholar
  68. Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C (1997) Biologically erodable microspheres as potential oral drug delivery systems. Nature 386(6623):410–414Google Scholar
  69. Medarova Z, Moore A (2008) Non-invasive detection of transplanted pancreatic islets. Diabetes Obes Metab 10(Suppl 4):88–97Google Scholar
  70. Medarova Z, Moore A (2009) MRI in diabetes: first results. AJR Am J Roentgenol 193(2):295–303Google Scholar
  71. Medarova Z, Evgenov NV, Dai G, Bonner-Weir S, Moore A (2006) In vivo multimodal imaging of transplanted pancreatic islets. Nat Protoc 1(1):429–435Google Scholar
  72. Näreoja T, Rosenholm JM, Lamminmäki U, Hänninen PE (2017) Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium(III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing. Anal Bioanal Chem 409(13):3407–3416Google Scholar
  73. Nose K, Pissuwan D, Goto M, Katayama Y, Niidome T (2012) Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice. Nanoscale 4(12):3776–3780Google Scholar
  74. Paolino D, Cosco D, Gaspari M, Celano M, Wolfram J, Voce P, Puxeddu E, Filetti S, Celia C, Ferrari M, Russo D, Fresta M (2014) Targeting the thyroid gland with thyroid-stimulating hormone (TSH)-nanoliposomes. Biomaterials 35(25):7101–7109Google Scholar
  75. Park H, Cho S, Han YH, Janat-Amsbury MM, Boudina S, Bae YH (2015) Combinatorial gene construct and non-viral delivery for anti-obesity in diet-induced obese mice. J Control Release 207:154–162Google Scholar
  76. Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int 2015:365672Google Scholar
  77. Pridgen EM, Alexis F, Kuo TT, Levy-Nissenbaum E, Karnik R, Blumberg RS, Langer R, Farokhzad OC (2013) Transepithelial transport of Fc-targeted nanoparticles by the neonatal fc receptor for oral delivery. Sci Transl Med 5(213):213ra167Google Scholar
  78. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222Google Scholar
  79. Saeideh S, Golshan S (2018) Carbon nanotube biosensor for diabetes disease. Crescent J Med Biol Sci 5(1):1–6Google Scholar
  80. Salahvarzi A, Mahani M, Torkzadeh-Mahani M, Alizadeh R (2017) Localized surface plasmon resonance based gold nanobiosensor: determination of thyroid stimulating hormone. Anal Biochem 516:1–5Google Scholar
  81. Saleh AA, El-Magd MA (2018) Beneficial effects of dietary silver nanoparticles and silver nitrate on broiler nutrition. Environ Sci Pollut Res Int 25(27):27031–27038Google Scholar
  82. Sangwai M, Sardar S, Vavia P (2014) Nanoemulsified orlistat-embedded multi-unit pellet system (MUPS) with improved dissolution and pancreatic lipase inhibition. Pharm Dev Technol 19(1):31–41Google Scholar
  83. Santhosh P, Manesh KM, Uthayakumar S, Gopalan AI, Lee KP (2009) Hollow spherical nanostructured polydiphenylamine for direct electrochemistry and glucose biosensor. Biosens Bioelectron 24(7):2008–2014Google Scholar
  84. Sawosz E, Binek M, Grodzik M, Zielińska M, Sysa P, Szmidt M, Niemiec T, Chwalibog A (2007) Influence of hydrocolloidal silver nanoparticles on gastrointestinal microflora and morphology of enterocytes of quails. Arch Anim Nutr 61(6):444–451Google Scholar
  85. Sharifi E, Salimi A, Shams E, Noorbakhsh A, Amini MK (2014) Shape-dependent electron transfer kinetics and catalytic activity of NiO nanoparticles immobilized onto DNA modified electrode: fabrication of highly sensitive enzymeless glucose sensor. Biosens Bioelectron 56:313–319Google Scholar
  86. Sharma G, Sharma AR, Nam JS, Doss GP, Lee SS, Chakraborty C (2015) Nanoparticle based insulin delivery system: the next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology 13:74Google Scholar
  87. Sibuyi NR, Thovhogi N, Gabuza KB, Meyer MD, Drah M, Onani MO, Skepu A, Madiehe AM, Meyer M (2017) Peptide-functionalized nanoparticles for the selective induction of apoptosis in target cells. Nanomedicine (Lond) 12(14):1631–1645Google Scholar
  88. Sibuyi NRS, Meyer M, Onani MO, Skepu A, Madiehe AM (2018) Vascular targeted nanotherapeutic approach for obesity treatment. Int J Nanomedicine 13:7915–7929Google Scholar
  89. Silva HD, Cerqueira MÂ, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867Google Scholar
  90. Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4(1):8–18Google Scholar
  91. Statistics | ADA (2019). Available at: https://www.diabetes.org/resources/statistics.
  92. Su A-P, Wei T, Gong Y-P, Gong R-X, Li Z-H, Zhu J-Q (2018) Carbon nanoparticles improve lymph node dissection and parathyroid gland protection during thyroidectomy: a systematic review and meta-analysis. Int J Clin Exp Med 11(2):463–473Google Scholar
  93. Sung HW, Sonaje K, Liao ZX, Hsu LW, Chuang EY (2012) pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res 45(4):619–629Google Scholar
  94. Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A 106(46):19268–19273Google Scholar
  95. Thiruvengadam M, Rajakumar G, Chung IM (2018) Nanotechnology: current uses and future applications in the food industry. 3 Biotech 8(1):74Google Scholar
  96. Tsai S, Shameli A, Yamanouchi J, Clemente-Casares X, Wang J, Serra P, Yang Y, Medarova Z, Moore A, Santamaria P (2010) Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32(4):568–580Google Scholar
  97. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62(3):284–304Google Scholar
  98. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14(1):45–57Google Scholar
  99. Wang Y, Wei W, Liu X, Zeng X (2009) Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique. Mater Sci Eng C 29(1):50–54Google Scholar
  100. Wang H, Dong P, Di D, Wang C, Liu Y, Jian C, Xuezhong W (2013) Interdigitated microelectrodes biosensor with nanodot arrays for thyroid-stimulating hormone detection. Micro & Nano Letters 8(1):11–14Google Scholar
  101. Wen Z, Ci S, Li J (2009) Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem C 113(31):13482–13487Google Scholar
  102. Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94(3):311–321Google Scholar
  103. WHO | Diabetes country profiles 2016 (2016) WHO: World Health Organization. https://www.who.int/diabetes/country-profiles/en/#S.
  104. WHO | Overweight and obesity (2018) WHO: World Health Organization. https://www.who.int/gho/ncd/risk_factors/overweight/en/.
  105. Wilson JT, Cui W, Chaikof EL (2008) Layer-by-layer assembly of a conformal nanothin PEG coating for intraportal islet transplantation. Nano Lett 8(7):1940–1948Google Scholar
  106. Xue Y, Xu X, Zhang XQ, Farokhzad OC, Langer R (2016) Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci U S A 113(20):5552–5557Google Scholar
  107. Xue S, Ren P, Wang P, Chen G (2018) Short and long-term potential role of carbon nanoparticles in total thyroidectomy with central lymph node dissection. Sci Rep 8(1):11936Google Scholar
  108. Yang J, Jiang LC, Zhang WD, Gunasekaran S (2010) A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82(1):25–33Google Scholar
  109. Ye H, Charpin-El Hamri G, Zwicky K, Christen M, Folcher M, Fussenegger M (2013) Pharmaceutically controlled designer circuit for the treatment of the metabolic syndrome. Proc Natl Acad Sci U S A 110(1):141–146Google Scholar
  110. Yoo EH, Lee SY (2010) Glucose biosensors: an overview of use in clinical practice. Sensors (Basel) 10(5):4558–4576Google Scholar
  111. Zhang N, Ping Q, Huang G, Xu W, Cheng Y, Han X (2006) Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 327(1–2):153–159Google Scholar
  112. Zhang Y, Liu Q, Yu J, Yu S, Wang J, Qiang L, Gu Z (2017) Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano 11(9):9223–9230Google Scholar
  113. Zhang Y, Yu J, Qiang L, Gu Z (2018) Nanomedicine for obesity treatment. Sci China Life Sci 61(4):373–379Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Khulood M. Al-Khater
    • 1
    • 2
    Email author
  • Ebtesam A. Al-Suhaimi
    • 2
    • 3
  1. 1.Department of AnatomyCollege of Medicine, Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  3. 3.Department of BiologyCollege of Sciences, Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations