Advertisement

Developments in Metallic Biomaterials and Surface Coatings for Various Biomedical Applications

  • Gurmohan SinghEmail author
  • Abhineet Saini
Conference paper
  • 21 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Metallic materials serve a great deal in biomedical applications due to specific desired properties mimicking to human anatomy in terms of hard tissues. Of these materials titanium-based alloys are the most preferred materials in orthopaedics and dentistry due to resemblance in mechanical behaviour of these materials to human bones and dentistry. But, these materials lack in certain characteristic properties, which makes them unable to be bioactive in nature. For this, metallic biomaterials are treated to inculcate various functional properties in them. Most common of these techniques is by surface coating using bioactive materials like hydroxyapatite (HAp). Alone HAp as well as HAp-based composite coatings find significant application in improving biomedical properties of metallic materials. This paper provides an in-depth review of various developments in applications of various conventional as well as newer metallic biomaterials and discusses techniques to improve properties of these biomaterials for number of biomedical applications.

Keywords

Metallic biomaterials Titanium alloys Surface coatings Hydroxyapatite Composite coatings 

References

  1. 1.
    Saini, M., Singh, Y., Arora, P., Arora, V., Jain, K.: Implant biomaterials: a comprehensive review. World J. Clin Case. WJCC 3(1), 52–57 (2015)Google Scholar
  2. 2.
    Hanawa, T.: In vivo metallic biomaterials and surface modification. Mater. Sci. Eng. A. 267(2), 260–266 (1999)Google Scholar
  3. 3.
    Breme, H., Biehl, V., Reger, N., Gawalt, E.: A metallic biomaterials: Introduction. In Handbook of Biomaterial Properties, pp. 151–158. Springer, New York, NY (2016)Google Scholar
  4. 4.
    Navarro, M., Michiardi, A., Castano, O., Planell, J.A.: Biomaterials in orthopaedics. J. R. Soc. Interface 5(27), 1137–1158 (2008)Google Scholar
  5. 5.
    Baino, F., Potestio, I.: Orbital implants: state-of-the-art review with emphasis on biomaterials and recent advances. Mater. Sci. Eng. C 69, 1410–1428 (2016)Google Scholar
  6. 6.
    Niinomi, M.: Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 243(1–2), 231–236 (1998)Google Scholar
  7. 7.
    Manam, N.S., Harun, W.S.W., Shri, D.N.A., Ghani, S.A.C., Kurniawan, T., Ismail, M.H., Ibrahim, M.H.I.: Study of corrosion in biocompatible metals for implants: a review. J. Alloy. Compd. 701, 698–715 (2017)Google Scholar
  8. 8.
    Kuroda, P.A.B., Buzalaf, M.A.R., Grandini, C.R.: Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys. Mater. Sci. Eng. C. 67, 511–515 (2016)Google Scholar
  9. 9.
    Michael, F.M., Khalid, M., Walvekar, R., Ratnam, C.T., Ramarad, S., Siddiqui, H., Hoque, M.E.: Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater. Sci. Eng. C. 67, 792–806 (2016)Google Scholar
  10. 10.
    Manivasagam, G., Dhinasekaran, D., Rajamanickam, A.: Biomedical implants: corrosion and its prevention-a review. Recent Pat. Corro. Sci. 2, 40–54 (2010)Google Scholar
  11. 11.
    Chen, Q., Thouas, G.A.: Metallic implant biomaterials. Mater. Sci. Eng. R. Rep. 87, 1–57 (2015)Google Scholar
  12. 12.
    Tang, T.T., Qin, L.: Translational study of orthopaedic biomaterials and devices. J. Orthop. Trans. 5, 69–71 (2016)Google Scholar
  13. 13.
    Wang, K.K., Wang, A., Gustavson, LJ.: Metal-on-metal wear testing of Co-Cr alloys. In Cobalt-base alloys for biomedical applications. ASTM International, 135–144 (1999)Google Scholar
  14. 14.
    Niinomi, M.: Recent metallic materials for biomedical applications. Metall. Mater. Trans. A. 33(3), 477–486 (2002)Google Scholar
  15. 15.
    Harun, W.S.W., Asri, R.I.M., Alias, J., Zulkifli, F.H., Kadirgama, K., Ghani, S.A.C., Shariffuddin, J.H.M.: A comprehensive review of hydroxyapatite-based coatings adhesion on metallic biomaterials. Ceram. Int. 44(2), 1250–1268 (2018)Google Scholar
  16. 16.
    Yamamuro, T.: Patterns of osteogenesis in relation to various biomaterials. J. Jpn. Soc. Biomater. 7, 19–23 (1989)Google Scholar
  17. 17.
    Saini, A., Pabla, B.S., Dhami, S.S.: Developments in cutting tool technology in improving machinability of Ti6Al4V alloy: a review. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(11), 1977–1989 (2016)Google Scholar
  18. 18.
    Froes, F.H.: How to market titanium: lower the cost. JOM 56(2), 39 (2004)Google Scholar
  19. 19.
    Niinomi, M., Nakai, M., Hieda, J.: Development of new metallic alloys for biomedical applications. Actabiomaterialia 8(11), 3888–3903 (2012)Google Scholar
  20. 20.
    Niinomi, M., Boehlert, C.J.: Titanium alloys for biomedical applications. In Advances in Metallic Biomaterials, pp. 179–213. Springer, Berlin, Heidelberg (2015)Google Scholar
  21. 21.
    Veiga, C., Davim, J.P., Loureiro, A.J.R.: Properties and applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci. 32(2), 133–148 (2012)Google Scholar
  22. 22.
    Olding, T., Sayer, M., Barrow, D.: Ceramic sol–gel composite coatings for electrical insulation. Thin Solid Films 398, 581–586 (2001)Google Scholar
  23. 23.
    Dorozhkin, S.V.: Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Actabiomaterialia 10(7), 2919–2934 (2014)Google Scholar
  24. 24.
    Liu, J.X., Yang, D.Z., Shi, F., Cai, Y.J.: Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Films 429(1–2), 225–230 (2003)Google Scholar
  25. 25.
    Kohn, D.H.: Metals in medical applications. Curr. Opin. Solid State Mater. Sci. 3(3), 309–316 (1998)Google Scholar
  26. 26.
    Dinu, M., Franchi, S., Pruna, V., Cotrut, C.M., Secchi, V., Santi, M., Vladescu, A.: Ti-Nb-Zr system and its surface biofunctionalization for biomedical applications. In Titanium in Medical and Dental Applications, pp. 175–200. Woodhead Publishing (2018)Google Scholar
  27. 27.
    Niinomi, M.: Titanium alloys with high biological and mechanical biocompatibility. In Biomaterials in Asia: In Commemoration of the 1st Asian Biomaterials Congress, Tsukuba, Japan, pp. 269–290. World Scientific (2008)Google Scholar
  28. 28.
    Zhao, X., Niinomi, M., Nakai, M., Ishimoto, T., Nakano, T.: Development of high Zr-containing Ti-based alloys with low Young’s modulus for use in removable implants. Mater. Sci. Eng. C. 31(7), 1436–1444 (2011)Google Scholar
  29. 29.
    Rao, S., Ushida, T., Tateishi, T., Okazaki, Y., Asao, S.: Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Bio-Med. Mater. Eng. 6(2), 79–86 (1996)Google Scholar
  30. 30.
    Perl, D.P., Moalem, S.: Aluminum and Alzheimer’s disease, a personal perspective after 25 years. J. Alzheimers Dis. 9(s3), 291–300 (2006)Google Scholar
  31. 31.
    Kannan, M.B.: Hydroxyapatite coating on biodegradable magnesium and magnesium-based allcccdoys. In Hydroxyapatite (HAp) for Biomedical Applications (pp. 289–306). Woodhead Publishing (2015)Google Scholar
  32. 32.
    Xiao, M., Chen, Y.M., Biao, M.N., Zhang, X.D., Yang, B.C.: Bio-functionalization of biomedical metals. Mater. Sci. Eng. C. 70, 1057–1070 (2017)Google Scholar
  33. 33.
    Hadidi, M., Bigham, A., Saebnoori, E., Hassanzadeh-Tabrizi, S.A., Rahmati, S., Alizadeh, Z.M., Rafienia, M.: Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf. Coat. Technol. 321, 171–179 (2017)Google Scholar
  34. 34.
    Harun, W.S.W., Asri, R.I.M., Sulong, A.B., Ghani, S.A.C., Ghazalli, Z.: Hydroxyapatite-based coating on biomedical implant. Hydroxyapatite: Advances in Composite Nanomaterials, Biomedical Applications and its Technological Facets, pp. 69–88 (2018)Google Scholar
  35. 35.
    Groot, K.D., Geesink, R., Klein, C.P.A.T., Serekian, P.: Plasma sprayed coatings of hydroxyapatite. J. Biomed. Mater. Res. 21(12), 1375–1381 (1987)Google Scholar
  36. 36.
    Sun, L., Berndt, C.C., Gross, K.A., Kucuk, A.: Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J. Biome. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 58(5), 570–592 (2001)Google Scholar
  37. 37.
    Khor, K.A., Yip, C.S., Cheang, P.: Post-spray hot isostatic pressing of plasma sprayed Ti-6Al-4 V/hydroxyapatite composite coatings. J. Mater. Process. Technol. 71(2), 280–287 (1997)Google Scholar
  38. 38.
    Yang, Y., Dennison, D., Ong, J.L.: Protein adsorption and osteoblast precursor cell attachment to hydroxyapatite of different crystallinities. Int. J. Oral Maxillofacial Implants, 20(2) (2005)Google Scholar
  39. 39.
    Cheang, P., Khor, K.A.: Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials 17(5), 537–544 (1996)Google Scholar
  40. 40.
    Hanyaloglu, C., Aksakal, B., Bolton, J.D.: Production and indentation analysis of WC/Fe–Mn as an alternative to cobalt-bonded hardmetals. Mater. Charact. 47(3–4), 315–322 (2001)Google Scholar
  41. 41.
    Mohseni, E., Zalnezhad, E., Bushroa, A.R.: Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4 V implant: a review paper. Int. J. Adhes. Adhes. 48, 238–257 (2014)Google Scholar
  42. 42.
    Cheung, J.T.: History and fundamentals of pulsed laser deposition Pulsed Laser Deposition of Thin Films ed DB Chrisey and G Hubler (1994)Google Scholar
  43. 43.
    Zhitomirsky, I., Gal-Or, L.: Electrophoretic deposition of hydroxyapatite. J. Mater. Sci. Mater. Med. 8(4), 213–219 (1997)Google Scholar
  44. 44.
    Liu, D.M., Yang, Q., Troczynski, T.: Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 23(3), 691–698 (2002)Google Scholar
  45. 45.
    Piveteau, L.D., Gasser, B., Schlapbach, L.: Evaluating mechanical adhesion of sol–gel titanium dioxide coatings containing calcium phosphate for metal implant application. Biomaterials 21(21), 2193–2201 (2000)Google Scholar
  46. 46.
    Packham, D.E.: The mechanical theory of adhesion. Handbook of Adhesive Technology, 69–93 (2003)Google Scholar
  47. 47.
    Surmenev, R.A.: A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surf. Coat. Technol. 206(8–9), 2035–2056 (2012)Google Scholar
  48. 48.
    Artzi, N., Zeiger, A., Boehning, F., bon Ramos, A., Van Vliet, K., Edelman, E.R.: Tuning adhesion failure strength for tissue-specific applications. Actabiomaterialia, 7(1), 67–74 (2011)Google Scholar
  49. 49.
    Packham, D.E.: Surface energy, surface topography and adhesion. Int. J. Adhes. Adhes. 23(6), 437–448 (2003)Google Scholar
  50. 50.
    Surmenev, R.A., Surmeneva, M.A., Ivanova, A.A.: Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis–a review. Actabiomaterialia 10(2), 557–579 (2014)Google Scholar
  51. 51.
    Kiran, A., Kumar, T.S., Sanghavi, R., Doble, M., Ramakrishna, S.: Antibacterial and bioactive surface modifications of titanium implants by PCL/TiO2 nanocomposite coatings. Nanomaterials 8(10), 860 (2018)Google Scholar
  52. 52.
    Wronska, M.A., O’Connor, I.B., Tilbury, M.A., Srivastava, A., Wall, J.G.: Adding functions to biomaterial surfaces through protein incorporation. Adv. Mater. 28(27), 5485–5508 (2016)Google Scholar
  53. 53.
    Kelly, M., Williams, R., Aojula, A., O’Neill, J., Trzińscka, Z., Grover, L., de Cogan, F.: Peptide aptamers: Novel coatings for orthopaedic implants. Mater. Sci. Eng. C. 54, 84–93 (2015)Google Scholar
  54. 54.
    Baino, F., Verné, E.: Glass-based coatings on biomedical implants: A state-of-the-art review. Biomed. Glass. 3(1), 1–17 (2017)Google Scholar
  55. 55.
    Bilsel, Y., Abci, I.: The search for ideal hernia repairs; mesh materials and types. Int. J. Surg. 10(6), 317–321 (2012)Google Scholar
  56. 56.
    Barabás, R., Katona, G., Bogya, E.S., Diudea, M.V., Szentes, A., Zsirka, B., Czikó, M.: Preparation and characterization of carboxyl functionalized multiwall carbon nanotubes–hydroxyapatite composites. Ceram. Int. 41(10), 12717–12727 (2015)Google Scholar
  57. 57.
    Kanhed, S., Awasthi, S., Goel, S., Pandey, A., Sharma, R., Upadhyaya, A., Balani, K.: Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites. Ceram. Int. 43(13), 10442–10449 (2017)Google Scholar
  58. 58.
    Mukherjee, S., Kundu, B., Chanda, A., Sen, S.: Effect of functionalisation of CNT in the preparation of HAp–CNT biocomposites. Ceram. Int. 41(3), 3766–3774 (2015)Google Scholar
  59. 59.
    Huang, Y., Han, S., Pang, X., Ding, Q., Yan, Y.: Electro deposition of porous hydroxyapatite/calcium silicate composite coating on titanium for biomedical applications. Appl. Surf. Sci. 271, 299–302 (2013)Google Scholar
  60. 60.
    Czechowska, J., Zima, A., Siek, D., Ślósarczyk, A.: The importance of chitosan and nano-TiHA in cement-type composites on the basis of calcium sulfate. Ceram. Int. 42(14), 15559–15567 (2016)Google Scholar
  61. 61.
    Kezhi, L., Qian, G., Leilei, Z., Yulei, Z., Shoujie, L., Kebing, G., Shaoxian, L.: Synthesis and characterization of Si-substituted hydroxyapatite bioactive coating for SiC-coated carbon/carbon composites. Ceram. Int. 43(1), 1410–1414 (2017)Google Scholar
  62. 62.
    Family, R., Solati-Hashjin, M., Nik, S.N., Nemati, A.: Surface modification for titanium implants by hydroxyapatite nanocomposite. Caspian J. Intern. Med. 3(3), 460 (2012)Google Scholar
  63. 63.
    Mobasherpour, I., Hashjin, M.S., Toosi, S.R., Kamachali, R.D.: Effect of the addition ZrO2–Al2O3 on nanocrystalline hydroxyapatite bending strength and fracture toughness. Ceram. Int. 35(4), 1569–1574 (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Chitkara University School of Engineering and TechnologyChitkara UniversityBaddiIndia
  2. 2.Chitkara University Institute of Engineering and TechnologyChitkara UniversityRajpuraIndia

Personalised recommendations