Advertisement

Experimental Investigation of Surface Integrity and Machining Characteristics of Ti–6Al–4V Alloy Machined by Wire-EDM Process

  • Sandeep MalikEmail author
  • Vineet Singla
Conference paper
  • 23 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Ti–6Al–4V alloy has been widely used in biomedical applications such as implants, screws, plates, and so on. The key parameters for implant stability are surface integrity (surface roughness and surface topography). In this study, experimental study on the surface integrity and machining characteristics of Ti–6Al–4V alloy machined by wire electrical discharge machining (W-EDM) has been studied. The research was planned using the methods of Taguchi and the orthogonal range of L-27 was chosen. The effect of W-EDM system parameters, such as peak current, pulse length, pulse frequency, wire feed, and spark gap, sets voltage on the machining and surface characteristics of material removal rate (MRR) and surface roughness (SR) along with machined surface topography. Such parameters have been shown to have a significant influence on the characteristics of the output response, and rises in MRR and SR with peak current.

Keywords

Ti–6al–4V alloy Wire-cut EDM Material removal rate Surface roughness (SR) Surface topography Biomedical application 

References

  1. 1.
    T Zaman, H.A., Safian, S., Idris, M.H., Kamarudin, A.: Metallic biomaterial for medical implant applications: a review. Appl. Mech. Mater. 735, 19–25 (2015). www.scientific.net/AMM.735.19
  2. 2.
    Niinomi, M., Narushima, T., Naka, M. Advances in Metallic Biomaterials, p. 348. Springer Berlin Heidelberg, Berlin, Germany (2015)Google Scholar
  3. 3.
    Pramanik, A.: Problems and solutions in machining of titanium alloys. Int. J. Adv. Manuf. Technol. 70(5), 919–928 (2014).  https://doi.org/10.1007/s00170-013-5326-xCrossRefGoogle Scholar
  4. 4.
    Klocke, F., Zeis, M., Klink, A., Veselovac, D.: Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium-and nickel-based blisks. Procedia CIRP 2(1), 98–101 (2012).  https://doi.org/10.1016/j.cirpj.2013.02.008CrossRefGoogle Scholar
  5. 5.
    Andrew Y.C. Nee.: Handbook of Manufacturing Engineering and Technology, 3485 pp. Springer, London (2015)Google Scholar
  6. 6.
    Kumar, S.; Singh, R.; Batish, A,; Singh, T.P. Electric discharge machining of titanium and its alloys: a review. Int. J. Mach. Mach. Mater. 11(1), 84–111 (2012).  https://doi.org/10.1504/ijmmm.2012.044922
  7. 7.
    Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy. Mater. Manuf. Processes 32(3), 274–285 (2017)CrossRefGoogle Scholar
  8. 8.
    Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S., Aggarwal, A.: Electric discharge machining—a potential choice for surface modification of metallic implants for orthopedic applications: A review. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 230(2), 331–353 (2016)CrossRefGoogle Scholar
  9. 9.
    Peng, P.W., Ou, K.L., Lin, H.C., Pan, Y.N., Wang, C.H.: Effect of electrical-discharging on formation of nanoporous biocompatible layer on titanium. J. Alloy. Compd. 492(1–2), 625–630 (2010).  https://doi.org/10.1016/j.jallcom.2009.11.197CrossRefGoogle Scholar
  10. 10.
    Yang, T.S., Huang, M.S., Wang, M.S., Lin, M.H., Tsai, M.Y., Wang, P.Y.: Effect of electrical discharging on formation of nanoporous biocompatible layer on Ti-6Al-4V alloys. Implant dentistry 22(4), 374–379 (2013).  https://doi.org/10.1097/ID.0b013e31829a170aCrossRefGoogle Scholar
  11. 11.
    Bin, T.C., Xin, L.D., Zhan, W., Yang, G.: Electro-spark alloying using graphite electrode on titanium alloy surface for biomedical applications. Appl. Surf. Sci. 257(15), 6364–6371 (2011).  https://doi.org/10.1016/j.apsusc.2011.01.120CrossRefGoogle Scholar
  12. 12.
    Harcuba, P., Bačakova, L., Strasky, J., Bačakova, M., Novotna, K., Janeček, M.: Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. J. Mech. Behav. Biomed. Mater. 7, 96–105 (2012).  https://doi.org/10.1016/j.jmbbm.2011.07.001CrossRefGoogle Scholar
  13. 13.
    Janecek, M., Novy, F., Strasky, J., Harcuba, P., Wagner, L.: Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth. J. Mech. Behav. Biomed. Mater. 4, 417–422 (2011).  https://doi.org/10.1016/j.jmbbm.2010.12.001CrossRefGoogle Scholar
  14. 14.
    Strasky, J., Janecek, M., Harcuba, P., et al.: The effect of microstructure on fatigue performance of Ti–6Al–4V alloy after EDM surface treatment for application in orthopaedics. J. Mech. Behav. Biomed. Mater. 4, 1955–1962 (2011).  https://doi.org/10.1016/j.jmbbm.2011.06.012CrossRefGoogle Scholar
  15. 15.
    Goswami, A., Kumar, J.: Optimization in wire-cut EDM of nimonic-80A using Taguchi’s approach and utility concept. Eng. Sci. Technol. Int. J. 17(4), 236–246 (2014)Google Scholar
  16. 16.
    Shabgard, M.R., Alenabi, H.: Ultrasonic assisted electrical discharge machining of Ti–6Al–4V alloy. Mater. Manuf. Processes 30(8), 991–1000 (2015).  https://doi.org/10.1080/10426914.2015.1004686CrossRefGoogle Scholar
  17. 17.
    Dwivedi, A.P., Choudhury, S.K.: Effect of tool rotation on MRR, TWR and surface integrity of AISI-D3 steel using rotary EDM process. Mater. Manuf. Processes (2016).  https://doi.org/10.1080/10426914.2016.1140198CrossRefGoogle Scholar
  18. 18.
    Pirani, C., Iacono, F., Generali, L., Sassatelli, P., Nucci, C., Lusvarghi, L., Gandolfi, M.G., Prati, C.: HyFlex EDM: superficial features, metallurgical analysis and fatigue resistance of innovative electro discharge machined NiTi rotary instruments. Int. Endod. J. (2015).  https://doi.org/10.1111/iej.12470CrossRefGoogle Scholar
  19. 19.
    Krishna, M.E., Patowari, P.K.: Parametric study of electric discharge coating using powder metallurgical green compact electrodes. Mater. Manuf. Processes 29(9), 1131–1138 (2014).  https://doi.org/10.1080/10426914.2014.930887CrossRefGoogle Scholar
  20. 20.
    Dhakar, K., Dvivedi, A.: Parametric Evaluation on near-dry electric discharge machining. Mater. Manuf. Processes 31(4), 413–421 (2016)CrossRefGoogle Scholar
  21. 21.
    Prakash, C., Kansal, H.K., Pabla, B.S., Puri, S.: Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J. Mater. Eng. Perform. (2015).  https://doi.org/10.1007/s11665-015-1619-6CrossRefGoogle Scholar
  22. 22.
    Chander Prakash, Sunpreet Singh, Pabla, B.S.: Multi-objective optimization of EDM parameters to deposit HA-containing coating on Mg–Zn–Mn alloy using particle swarm optimization. Vacuum 158, 180–190 (2018)Google Scholar
  23. 23.
    Chander Prakash, Sunpreet Singh, Pabla, B.S., Uddin, M.S.: Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg–Zn–Mn alloy. Sur. Coat. Technol. 346, 9–18 (2018)Google Scholar
  24. 24.
    Chander Prakash and M. S. Uddin, “Surface modification of β-phase Ti implant by hydroxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surf. Coat. Technol. Part A 236, 134–145 (2017)Google Scholar
  25. 25.
    Chander Prakash, Kansal, H.K., Pabla, B.S., Sanjeev Puri: Effect of surface nano-porosities fabricated by powder mixed electric discharge machining on bone-implant interface: an experimental and finite element study. Nanosci. Nanotechnol. Lett. 8(10), 815–826 (2016).  https://doi.org/10.1166/nnl.2016.2255
  26. 26.
    Chander Prakash, Kansal, H.K., Pabla, B.S., Sanjeev Puri: Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology. J. Mech. Sci. Technol. 30(9), 4195–4204 (2016).  https://doi.org/10.1007/s12206-016-0831-0
  27. 27.
    Chander Prakash, H.K. Kansal, B.S. Pabla, and Sanjeev Puri: Powder mixed electric discharge machining an innovative surface modification technique to enhance fatigue performance and bioactivity of β-Ti implant for orthopaedics application. J. Comput. Inf. Sci. Eng. 14(4), 1–9, 2016.  https://doi.org/10.1115/1.4033901
  28. 28.
    Chander Prakash, H.K. Kansal, B.S., Sanjeev Puri: Potential of powder mixed electric discharge machining to enhance the wear and tribological performance of β-Ti implant for orthopedic applications. J. Nanoeng. Nanomanuf. 5(4), 261–269 (2015)Google Scholar
  29. 29.
    Kuriachen, B., Lijesh, K.P. and Kuppan, P.: Multi response optimization and experimental investigations into the impact of wire EDM on the tribological properties of Ti–6Al–4V. Trans. Indian Inst. Met., 1–11 (2018)Google Scholar
  30. 30.
    Rahman, S.S., Ashraf, M.Z.I., Bashar, M.S., Kamruzzaman, M., Amin, A.N., Hossain, M.M.: Crystallinity, surface morphology, and chemical composition of the recast layer and rutile-TiO2 formation on Ti–6Al–4V ELI by wire-EDM to enhance biocompatibility. Int. J. Adv. Manuf. Technol. 93(9–12), 3285–3296 (2017)CrossRefGoogle Scholar
  31. 31.
    Klocke, F., Schwade, M., Klink, A., Kopp, A.: EDM machining capabilities of magnesium (Mg) alloy WE43 for medical applications. Procedia Eng. 19, 190–195 (2011).  https://doi.org/10.1016/j.proeng.2011.11.100CrossRefGoogle Scholar
  32. 32.
    Razak, M.A., Abdul-Rani, A.M.; Rao, T.V.V.L.N., Pedapati, S.R., Kamal, S.: Electrical discharge machining on biodegradable AZ31 magnesium alloy using taguchi method. Procedia Eng. 148, 916–922 (2016).  https://doi.org/10.1016/j.proeng.2016.06.501
  33. 33.
    Klocke, F., Schwade, M., Klink, A., Kopp, A.: Influence of electro discharge machining of biodegradable magnesium on the biocompatibility. Procedia CIRP 5, 88–93 (2013).  https://doi.org/10.1016/j.procir.2013.01.018CrossRefGoogle Scholar
  34. 34.
    Ponappa, K., Aravindan, S., Rao, P.V., Ramkumar, J., Gupta, M.: The effect of process parameters on machining of magnesium nano alumina composites through EDM. Int. J. Adv. Manuf. Technol. 46, 1035–1042 (2010).  https://doi.org/10.1007/s00170-009-2158-9CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUIET, Maharshi Dayanand UniversityRohtakIndia

Personalised recommendations