Advertisement

Metal Nanoparticle Health Risk Assessment

  • Luca Di Giampaolo
  • Claudia Petrarca
  • Rocco Mangifesta
  • Cosima Schiavone
  • Cinzia Pini
  • Alice Malandra
  • Francesca Bramante
  • Alessio Pollutri
  • Michele Di Frischia
  • Mario Di GioacchinoEmail author
Chapter
  • 20 Downloads
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

The widespread application of nanomaterials confers enormous potential for human exposure and environmental release particularly for workers producing nanoparticles or making nano-based objects. The various routes by which nanoparticles could be taken up by the body (respiratory, skin, and digestive) complicate the definition of NPs to be used in risk assessment.

The present review describes the difficulties in making a sufficiently correct risk assessment and management for nanomaterials, addressing the various problems that render difficult the risk management of nanomaterials in the occupational setting, in particular the exposure scenario, the exposure appraisal, and the hazard identification and characterization.

Keywords

Nanoparticles Environmental monitoring Exposure appraisal Risk assessment Risk management Control banding 

References

  1. 1.
    Leso V, Iavicoli I. Palladium nanoparticles: toxicological effects and potential implications for occupational risk assessment. Int J Mol Sci. 2018;7:19.Google Scholar
  2. 2.
    Pietroiusti A, Magrini A. Engineered nanoparticles at the workplace: current knowledge about workers’ risk. Occup Med (Lond). 2015;65:171–3.Google Scholar
  3. 3.
    Petrarca C, Clemente E, Di Giampaolo L, Mariani-Costantini R, Leopold K, Schindl R, Lotti LV, Mangifesta R, Sabbioni E, Niu Q, Bernardini G, Di Gioacchino M. Palladium nanoparticles induce disturbances in cell cycle entry and progression of peripheral blood mononuclear cells: paramount role of ions. Res J Immunol. 2014;2014:295092.Google Scholar
  4. 4.
    Almansour M, Sajti L, Melhim W, Jarrar BM. Ultrastructural hepatocytic alterations induced by silver nanoparticle toxicity. Ultrastructural Pathology. 2016:40(2):92–100.Google Scholar
  5. 5.
    Jefferson DA. The surface activity of ultrafine particles. Phil Trans R Soc Lond A. 2000;358:2683–92.Google Scholar
  6. 6.
    Noël A, Truchon G, Cloutier Y, Charbonneau M, Maghni K, Tardif R. Mass or total surface area with aerosol size distribution as exposure metrics for inflammatory, cytotoxic and oxidative lung responses in rats exposed to titanium dioxide nanoparticles. Toxicol Ind Health. 2017;33:351–64.PubMedGoogle Scholar
  7. 7.
    Dankers ACA, Kuper CF, Boumeester AJ, Fabriek BO, Kooter IM, Gröllers-Mulderij M, Tromp P, Nelissen I, Zondervan-Van Den Beuken EK, Vandebriel RJ. A practical approach to assess inhalation toxicity of metal oxide nanoparticles in vitro. J Appl Toxicol. 2018;38(2):160–71.PubMedGoogle Scholar
  8. 8.
    Muhlfeld C, Gehr P, Rothen-Rutishauser B. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly. 2008;138:387–91.PubMedGoogle Scholar
  9. 9.
    Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol. 2008;38:371–6.PubMedGoogle Scholar
  10. 10.
    Takenaka S, Karg E, Kreyling WG, Lentner B, Moller W, Behnke-Semmler M, Jennen L, Walch A, Michalke B, Schramel P, Heyder J, Schulz H. Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol. 2006;18:733–40.PubMedGoogle Scholar
  11. 11.
    Moore TL, Hauser D, Gruber T, Rothen-Rutishauser B, Lattuada M, Petri-Fink A, Lyck R. Cellular shuttles: monocytes/macrophages exhibit Transendothelial transport of nanoparticles under physiological flow. ACS Appl Mater Interfaces. 2017;9:18501–11.PubMedGoogle Scholar
  12. 12.
    Nurkiewicz TR, Porter DW, Hubbs AF, Cumpston JL, Chen BT, Frazer DG, Castranova V. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol. 2008;5:1.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PHB, Boere AJF, Krystek P, Campbell CJ, Hadoke PWF, Donaldson K, Cassee FR, Newby DE, Duffin R, Mills NL. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 2017;11:4542–52.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Videira MA, Botelho MF, Santos AC, Gouveia LF, de Lima JJ, Almeida AJ. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target. 2002;10:607–13.PubMedGoogle Scholar
  15. 15.
    Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 2001;4:547–51.Google Scholar
  16. 16.
    Takenaka S, Karg E, Kreyling WG, Lentner B, Schulz H, Ziesenis A, Schramel P, Heyder J. Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung. Inhal Toxicol. 2004;16(Suppl. 1):83–92.PubMedGoogle Scholar
  17. 17.
    Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH. Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health. 2008;50:1–6.PubMedGoogle Scholar
  18. 18.
    Dumková J, Smutná T, Vrlíková L, Le Coustumer P, Večeřa Z, Dočekal B, Mikuška P, Čapka L, Fictum P, Hampl A, Buchtova M. Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs. Part Fibre Toxicol. 2017;14:55.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Dingsheng L, Morishita M, Wagner JG, Fatouraie M, Wooldridge M, Eagle WE, Barres J, Carlander U, Emond C, Jolliet O. In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rat. Part Fibre Toxicol. 2016;13:45.Google Scholar
  20. 20.
    Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A. 2002;65:1531–43.PubMedGoogle Scholar
  21. 21.
    Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol. 2004;16:437–45.PubMedGoogle Scholar
  22. 22.
    Wang JX, Chen CY, Sun J, Yu HW, Li YF, Li B, Xing L, Huang YY, He W, Gao YX, Chai ZF, Zhao YL. Translocation of inhaled TiO2 nanoparticles along olfactory nervous system to brain studied by synchrotron radiation X-ray fluorescence. High Energy Physics & Nuclear Physics. 2005;29:76–9.Google Scholar
  23. 23.
    Yu LE, Yung LL, Ong C, Tan Y, Balasubramaniam KS, Hartono D, Shui G, Wenk MR, Ong W. Translocation and effects of gold nanoparticles after inhalation exposure in rats. Nanotoxicology. 2007;1:235–42.Google Scholar
  24. 24.
    Tang J, Xiong L, Wang S, Wang J, Liu L, Li J, Wan Z, Xi T. Influence of silver nanoparticles on neurons and blood-brain barrier via subcutaneous injection in rats. Appl Surface Sci. 2008;255:502–4.Google Scholar
  25. 25.
    Karlberg AT, Börje A, Johansen JD, Lidén C, Rastogi S, Roberts D, Uter W, White IR. Activation of non-sensitizing or low-sensitizing fragrance substances into potent sensitizers-prehaptens and prohaptens. Contact Dermatitis. 2013;69:323–34.PubMedGoogle Scholar
  26. 26.
    Smulders S, Golanski L, Smolders E, Vanoirbeek J, Hoet PHM. Nano-TiO modulates the dermal sensitization potency of dinitrochlorobenzene after topical exposure. Br J Dermatol. 2015;172(2):392–9.Google Scholar
  27. 27.
    James SA, Feltis BN, de Jonge MD, Sridhar M, Kimpton JA, Altissimo M, Mayo S, Zheng C, Hastings A, Howard DL, Paterson DJ, Wright PF, Moorhead GF, Turney TW, Fu J. Quantification of ZnO nanoparticle uptake, distribution, and dissolution within individual human macrophages. ACS Nano. 2013;7:10621–35.PubMedGoogle Scholar
  28. 28.
    Niska K, Zielinska E, Radomski MW, Inkielewicz-Stepniak I. Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem Biol Interact. 2017;295:38–51.PubMedGoogle Scholar
  29. 29.
    Cathe DS, Whitaker JN, Breitner EK, Comfort KK. Exposure to metal oxide nanoparticles in physiological fluid induced synergistic biological effects in a keratinocyte model. Toxicol Lett. 2017;268:1–7.PubMedGoogle Scholar
  30. 30.
    Güngüneş CD, Şeker S, Elçin AE, Elçin YM. A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles. Drug Chem Toxicol. 2017;40:215–27.Google Scholar
  31. 31.
    Wei L, Lu J, Xu H, Patel A, Chen ZS, Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015;20(5):595–601.PubMedGoogle Scholar
  32. 32.
    Wei X, Yu J, Ding L, Hu J, Jiang W. Effect of oxide nanoparticles on the morphology and fluidity of phospholipid membranes and the role of hydrogen bonds. J Environ Sci (China). 2017;57:221–30.Google Scholar
  33. 33.
    Wang M, Lai X, Shao L, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine. 2018;13:4445–59.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Brown JS, Zeman KL, Bennet WD. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med. 2002;166:1240–7.PubMedGoogle Scholar
  35. 35.
    Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–7.PubMedGoogle Scholar
  36. 36.
    Park EJ, Park YK, Park K. Acute toxicity and tissue distribution of cerium oxide nanoparticles by a single Oral Administration in Rats. Toxicol Res. 2009;25:79–84.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Lomer MCE, Thompson RP, Powell JJ. Fine and ultrafine particles in the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc. 2002;61:123–30.PubMedGoogle Scholar
  38. 38.
    Ballestri M, Baraldi A, Gatti AM, Furci L, Bagni A, Loria P, Rapaa M, Carulli N, Albertazzi A. Liver and kidney foreign bodies granulomatosis in a patient with malocclusion, bruxism, and worn dentalprostheses. Gastroenterology. 2001;121:1234–8.PubMedGoogle Scholar
  39. 39.
    Florence AT, Hussain N. Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Advanced Drug Delivery Reviews 2001;50:S69–S89.Google Scholar
  40. 40.
    Warheit DB, Donner EM. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: recognizing hazard and exposure issues. Food Chem Toxicol. 2015;85:138–47.PubMedGoogle Scholar
  41. 41.
    Gao G, Ze Y, Zhao X, Sang X, Zheng L, Ze X, Gui S, Sheng L, Sun Q, Hong J, Yu X, Wang L, Hong F, Zhang X. Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. J Hazard Mater. 2013;258-259:133–43.Google Scholar
  42. 42.
    MacNicoll A, Kelly M, Aksoy H, Kramer E, Bouwmeester H, Chaudhry Q. A study of the uptake and biodistribution of nano-titanium dioxide using in vitro and in vivo models of oral intake. J Nanopart Res. 2015;17:2.Google Scholar
  43. 43.
    Jones K, Morton J, Smith I, Jurkschat K, Harding AH, Evans G. Human in vivo and in vitro studies on gastrointestinal absorption of titanium dioxide nanoparticles. Toxicology Lett. 2015;233(2):95–101.Google Scholar
  44. 44.
    Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, Verharen HW, Brandon EFA, de Jong WH. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Particle and Fibre Toxicology. 2014;11:30.Google Scholar
  45. 45.
    Hoet PHM, Bruske-Hohlfeld I, Salata OV. Nanoparticles – known and unknown health risks. J Nanobiotechnol. 2004;2:12–27.Google Scholar
  46. 46.
    Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Wang Y, Zhao Y. Ultrahigh reactivity and grave nanotoxicity of copper nanoparticle. J Radioanal Nucl Chem. 2007;272:595–8.Google Scholar
  47. 47.
    Hillyer JF, Albrecht RM. Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci. 2001;90:1927–36.Google Scholar
  48. 48.
    Di Gioacchino M, Petrarca C, Lazzarin F, Di Giampaolo L, Sabbioni E, Boscolo P, Mariani-Costantini R, Bernardini G. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011 Jan-Mar;24(1 Suppl):65S–71S.PubMedGoogle Scholar
  49. 49.
    Pedata P, Petrarca C, Garzillo EM, Di Gioacchino M. Immunotoxicological impact of occupational and environmental nanoparticles exposure: the influence of physical, chemical, and combined characteristics of the particles. Int J Immunopathol Pharmacol. 2016;29:343–53.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Petrarca C, Clemente E, Amato V, Pedata P, Sabbioni E, Bernardini G, Iavicoli I, Cortese S, Niu Q, Otsuki T, Paganelli R, Di Gioacchino M. Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy. 2015;13(1):13.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Zhang Q, Xu L, Wang J, Sabbioni E, Piao L, Di Gioacchino M, Niu Q. Lysosomes involved in the cellular toxicity of nano-alumina: combined effects of particle size and chemical composition. J Biol Regul Homeost Agents. 2013;27:365–75.PubMedGoogle Scholar
  52. 52.
    Poma A, Ragnelli AM, de Lapuente J, Ramos D, Borras M, Aimola P, Di Gioacchino M, Santucci S, De Marzi L. In vivo inflammatory effects of ceria nanoparticles on CD-1 mouse: evaluation by hematological, histological, and TEM analysis. J Immunol Res. 2014:361–419.Google Scholar
  53. 53.
    Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Tox Sci. 2004;77:126–34.Google Scholar
  54. 54.
    Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. Comparative toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 2004;76:117–25.Google Scholar
  55. 55.
    Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E, Di Giampaolo L, Dadorante V, Schiavone C, Boscolo P, Mariani Costantini R, Di Gioacchino M. Cobalt nano-particles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol. 2006;19:11–4.PubMedGoogle Scholar
  56. 56.
    Sabbioni E, Fortaner S, Farina M, Del Torchio R, Olivato I, Petrarca C, Bernardini G, Mariani-Costantini R, Perconti S, Di Giampaolo L, Gornati R, Di Gioacchino M. Cytotoxicity and morphological transforming potential of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts: an in vitro model. Nanotoxicology. 2014a;8:455–64.PubMedGoogle Scholar
  57. 57.
    Sabbioni E, Fortaner S, Farina M, Del Torchio R, Petrarca C, Bernardini G, Mariani-Costantini R, Perconti S, Di Giampaolo L, Gornati R, Di Gioacchino M. Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts. Nanotoxicology. 2014b;8:88–99.PubMedGoogle Scholar
  58. 58.
    Reale M, Vianale G, Lotti LV, Mariani-Costantini R, Perconti S, Cristaudo A, Leopold K, Antonucci A, Di Giampaolo L, Iavicoli I, Di Gioacchino M, Boscolo P. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of palladium-sensitized women. J Occup Environ Med. 2011;53:1054–60.Google Scholar
  59. 59.
    Boscolo P, Bellante V, Leopold K, Maier M, Di Giampaolo L, Antonucci A, Iavicoli I, Tobia L, Paoletti A, Montalti M, Petrarca C, Qiao N, Sabbioni E, Di Gioacchino M. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of non-atopic women. J Biol Regul Homeost Agents. 2010;24(2):207–14.Google Scholar
  60. 60.
    Di Giampaolo L, Di Gioacchino M, Mangifesta R, Gatta A, Tinari N, Grassadonia A, Niu Q, Paganelli R, Sabbioni E, Otsuki T, Petrarca C. Occupational allergy: is there a role for nanoparticles? J Biol Regul Homeost Agents. 2019;33:661–8.PubMedGoogle Scholar
  61. 61.
    Nanotechnologies. A preliminary risk analysis on the basis of aworkshop organized in Brussels on 1–2 March 2004 by the Health and Consumer Protection Directorate General of the European Commission. 2004.; europa.eu.int/comm/health/ph risk/documents/ev 20040301 en.pdf.
  62. 62.
    Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113:823–39.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Anders CB, Chess JJ, Wingett DJ, Punnoose A. Serum proteins enhance dispersion stability and influence the cytotoxicity and Dosimetry of ZnO nanoparticles in suspension and adherent Cancer cell models. Nanoscale Res Lett. 2015;10(1):448.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol. 2019;16:19.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Boccuni F, Gagliardi D, Ferrante R, Rondinone BM, Iavicoli S. Measurement techniques of exposure to nanomaterials in the workplace for low- and medium-income countries: a systematic review. Int J Hyg Environ Health. 2017;220:1089–97.PubMedGoogle Scholar
  66. 66.
    Maynard AD, Kuempel ED. Airborne nanostructured particles and occupational health. J Nanoparticles Res. 2005;7:587–614.Google Scholar
  67. 67.
    Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA. Nanotoxicology. Occup Environ Med. 2004;61:727–278.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci. 2006;92:5–22.PubMedGoogle Scholar
  69. 69.
    Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114:1172–8.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Lam CW, James JT, McCluskey RL, Arlli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006;36:159–217.Google Scholar
  71. 71.
    Shvedova AA, Kisin EK, Mercer R, Murray AR, Johnson VJ, Potapovich AI. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289:L698–708.Google Scholar
  72. 72.
    Kipen HM, Laskin DL. Smaller is not always better: nanotechnology yields nanotoxicology. Am J Physiol Lung Cell Mol Physiol. 2005;289:L696–7.PubMedGoogle Scholar
  73. 73.
    Radomski A, Jurasz P, Alonso-Escolano P, Drew M, Morandi M, Tadeusz M, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005;146:882–93.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Heinrich U, Fuhst R, Rittinghauseen S, Creutzenberg O, Bellmann B, Koch W. Chronic inhalation exposure of Wistar rats and 2 different strains of mice to diesel-engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol. 1995;7:533–56.Google Scholar
  75. 75.
    Hong F, Ji L, Zhou Y, Wang L. Chronic nasal exposure to nanoparticulate TiO2 causes pulmonary tumorigenesis in male mice. Environ Toxicol. 2017;32:1651–7.PubMedGoogle Scholar
  76. 76.
    Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol. 2000;12:1113–26.PubMedGoogle Scholar
  77. 77.
    Scientific Committee on Emerging and Newly Identified Health Risks. Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. Brussels: Health & Consumer Protection Directorate-General, European Commission; 2005.Google Scholar
  78. 78.
    Heringa MB, Geraets L, van Eijkeren JCH, Vandebriel RJ, de Jong WH, Oomen AG. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology. 2016;10:1515–25.PubMedGoogle Scholar
  79. 79.
    Khalili FJ, Jafari S, Eghbal MA. A review of molecular mechanisms involved in toxicity of nanoparticles. ADV Pharma Bull. 2015;5:447–54.Google Scholar
  80. 80.
    Bakand S, Hayes A. Toxicological considerations, toxicity assessment, and risk Management of Inhaled Nanoparticles. Int J Mol Sci. 2016 Jun 14;17(6):929.PubMedCentralGoogle Scholar
  81. 81.
    Ohlwein S, Kappeler R, Kutlar Joss M, Künzli N, Hoffmann B. Health effects of ultrafine particles: a systematic literature rfeview update of epidemiological evidence. Int J Public Health. 2019;64:547–59.Google Scholar
  82. 82.
    Lam CW. Pulmonary Toxicity of Single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 2003;77:126–34.Google Scholar
  83. 83.
    Englert BC. Nanomaterials and the environment: uses, methods and measurement. J Environ Monit. 2007;9:1154–6.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Luca Di Giampaolo
    • 1
    • 2
  • Claudia Petrarca
    • 2
  • Rocco Mangifesta
    • 2
  • Cosima Schiavone
    • 2
  • Cinzia Pini
    • 3
  • Alice Malandra
    • 3
  • Francesca Bramante
    • 1
  • Alessio Pollutri
    • 1
  • Michele Di Frischia
    • 1
  • Mario Di Gioacchino
    • 1
    • 2
    • 3
    Email author
  1. 1.School of Specialisation in Occupational Medicine, “G. D’Annunzio” UniversityChietiItaly
  2. 2.Unit of Immunotoxicology and Allergy, Department of Medicine and Aging Sciences (DMSI) and CASTUniversity G. d’Annunzio of Chieti-PescaraChietiItaly
  3. 3.Unit of AllergyUniversity HospitalChietiItaly

Personalised recommendations