Advertisement

Clinical Evaluation of Plasma Decoy Receptor 3 Levels in Silicosis

  • Suni Lee
  • Shoko Yamamoto
  • Hiroaki Hayashi
  • Hidenori Matsuzaki
  • Naoko Kumagai-Takei
  • Tamayo Hatayama
  • Min Yu
  • Kei Yoshitome
  • Masayasu Kusaka
  • Yasumitsu Nishimura
  • Takemi OtsukiEmail author
Chapter
  • 13 Downloads
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

Silicosis (SIL) is known to complicate various autoimmune diseases such as rheumatoid arthritis and systemic sclerosis (SSc). To investigate the immunological alterations in SIL, plasma decoy receptor 3 (DcR3) levels were measured. Additionally, correlation studies, multiple regression analysis, and factor analysis were performed using various clinical parameters including respiratory and exposure items, and immunological parameters such as cytokine levels and titers of various autoantibodies detected in SIL subjects. Although actual DcR3 values in SIL and SSc subjects were higher than those in HV, since age was the confounding factor, there were no significant differences. However, in terms of the role of DcR3 in SIL, positive correlations were found between DcR3 and TGF-β or soluble IL-2 receptor (sIL-2R). Multiple regression analysis showed a close and positive relation in SIL between DcR3 and G-CSF, and TGF-β and CENP-B antibodies. Finally, factor analysis indicated that DcR3 values were related to ANA and ANCA-antibodies, as well as G-CSF and IL-6. These data suggested that DcR3 could potentially be utilized as a representative marker of immunological dysfunction in SIL. Further studies are required to explore the cellular and molecular roles of DcR3, and to evaluate the clinical efficacy of utilizing DcR3 measurements for the early detection of complicated autoimmune diseases in SIL patients.

Keywords

Silicosis Autoimmune diseases Systemic sclerosis Decoy receptor 3 

Notes

Acknowledgments

All authors thank Ms. Yoko Yoshida for the organization of patient sample collection and former Professor Dr. Ayako Ueki for her establishment of the research projects. Financial support: This study was supported in part by a KAKENHI grant (25460825) from the Japanese Society for the Promotion of Science, and research grants from the Kawasaki Medical School (27B065, 26B16, 24S6, 23S5), Ryobi-Teien (2012), and the Kawasaki Foundation for Medical Science and Medical Welfare (2012).

Conflicts of Interest

All authors declare no competing interests regarding this study.

References

  1. 1.
    Huang Yuh-Chin T, Ghio AJ, Maier LA, editors. A clinical guide to occupational and environmental lung diseases (respiratory medicine). New York, NY: Humana Press; 2012.Google Scholar
  2. 2.
    Graham WG. Silicosis. Clin Chest Med. 1992;13(2):253–67.PubMedGoogle Scholar
  3. 3.
    Morgan WK. The pneumoconioses. Curr Opin Pulm Med. 1995;1(2):82–8.PubMedGoogle Scholar
  4. 4.
    Wagner GR. Asbestosis and silicosis. Lancet. 1997;349(9061):1311–13115.  https://doi.org/10.1016/S0140-6736(96)07336-9.PubMedGoogle Scholar
  5. 5.
    Castranova V, Vallyathan V. Silicosis and coal workers’ pneumoconiosis. Environ Health Perspect. 2000;108(S4):675–84.  https://doi.org/10.1289/ehp.00108s4675.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–56.  https://doi.org/10.1038/ni.1631.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kuroda E, Ishii KJ, Uematsu S, Ohata K, Coban C, Akira S, Aritake K, Urade Y, Morimoto Y. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity. 2011;34(4):514–26.  https://doi.org/10.1016/j.immuni.2011.03.019.. Epub 2011 Apr 14Google Scholar
  8. 8.
    Peeters PM, Perkins TN, Wouters EF, Mossman BT, Reynaert NL. Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part Fibre Toxicol. 2013;10:3.  https://doi.org/10.1186/1743-8977-10-3.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Heppleston AG. Silica and asbestos: contrasts in tissue response. Ann N Y Acad Sci. 1979;330:725–44.PubMedGoogle Scholar
  10. 10.
    Lapp NL, Castranova V. How silicosis and coal workers’ pneumoconiosis develop - a cellular assessment. Occup Med. 1993;8(1):35–56.PubMedGoogle Scholar
  11. 11.
    Privalova LI, Katsnelson BA, Sharapova NY, Kislitsina NS. On the relationship between activation and breakdown of macrophages in the pathogenesis of silicosis (an overview). Med Lav. 1995;86(6):511–21.PubMedGoogle Scholar
  12. 12.
    Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157(5Pt1):1666–80.  https://doi.org/10.1164/ajrccm.157.5.9707141.Google Scholar
  13. 13.
    IARC. IARC monographs on the evaluation of carcinogenic risks to humans, silica, some silicates, coal dust and para-aramid fibrils, vol. 68. Geneva: WHO Press; 1997.Google Scholar
  14. 14.
    Caplan A. Certain unusual radiological appearances in the chest of coal-miners suffering from rheumatoid arthritis. Thorax. 1953;8(1):29–37.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Uber CL, McReynolds RA. Immunotoxicology of silica. Crit Rev Toxicol. 1982;10(4):303–19.  https://doi.org/10.3109/10408448209003370.PubMedGoogle Scholar
  16. 16.
    Steenland K, Goldsmith DF. Silica exposure and autoimmune diseases. Am J Ind Med. 1995;28(5):603–8.PubMedGoogle Scholar
  17. 17.
    Parks CG, Conrad K, Cooper GS. Occupational exposure to crystalline silica and autoimmune disease. Environ Health Perspect. 1997;107(S5):793–802.  https://doi.org/10.1289/ehp.99107s5793.Google Scholar
  18. 18.
    Cooper GS, Miller FW, Germolec DR. Occupational exposures and autoimmune diseases. Int Immunopharmacol. 2002;2(2–3):303–13.PubMedGoogle Scholar
  19. 19.
    Gregorini G, Tira P, Frizza J, et al. ANCA-associated diseases and silica exposure. Clin Rev Allergy Immunol. 1997;15(1):21–40.PubMedGoogle Scholar
  20. 20.
    Saeki T, Fujita N, Kourakata H, Yamazaki H, Miyamura S. Two cases of hypertrophic pachymeningitis associated with myeloperoxidase antineutrophil cytoplasmic autoantibody (MPO-ANCA)-positive pulmonary silicosis in tunnel workers. Clin Rheumatol. 2004;23(1):76–80.  https://doi.org/10.1007/s10067-003-0815-1.PubMedGoogle Scholar
  21. 21.
    Gómez-Puerta JA, Gedmintas L, Costenbader KH. The association between silica exposure and development of ANCA-associated vasculitis: systematic review and meta-analysis. Autoimmun Rev. 2013;12:1129–35.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Hamilton JA. Nondisposable materials, chronic inflammation, and adjuvant action. J Leukoc Biol. 2013;12(12):1129–35.  https://doi.org/10.1016/j.autrev.2013.06.016.Google Scholar
  23. 23.
    Hayashi H, Miura Y, Maeda M, Murakami S, Kumagai N, Nishimura Y, Kusaka M, Urakami K, Fujimoto W, Otsuki T. Reductive alteration of the regulatory function of the CD4(+)CD25(+) T cell fraction in silicosis patients. Int J Immunopathol Pharmacol. 2010;23(4):1099–109.  https://doi.org/10.1177/039463201002300414.PubMedGoogle Scholar
  24. 24.
    Lee S, Matsuzaki H, Kumagai-Takei N, Yoshitome K, Maeda M, Chen Y, Kusaka M, Urakami K, Hayashi H, Fujimoto W, Nishimura Y, Otsuki T. Silica exposure and altered regulation of autoimmunity. Environ Health Prev Med. 2014;19(5):322–9.  https://doi.org/10.1007/s12199-014-0403-9.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Otsuki T, Matsuzaki H, Lee S, Kumagai-Takei N, Yamamoto S, Hatayama T, Yoshitome K, Nishimura Y. Environmental factors and human health: fibrous and particulate substance-induced immunological disorders and construction of a health-promoting living environment. Environ Health Prev Med. 2016;21(2):71–81.  https://doi.org/10.1007/s12199-015-0499-6.PubMedGoogle Scholar
  26. 26.
    Tomokuni A, Aikoh T, Matsuki T, Isozaki Y, Otsuki T, Kita S, Ueki H, Kusaka M, Kishimoto T, Ueki A. Elevated soluble Fas/APO-1 (CD95) levels in silicosis patients without clinical symptoms of autoimmune diseases or malignant tumours. Clin Exp Immunol. 1997;110(2):303–9.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Tomokuni A, Otsuki T, Isozaki Y, Kita S, Ueki H, Kusaka M, Kishimoto T, Ueki A. Serum levels of soluble Fas ligand in patients with silicosis. Clin Exp Immunol. 1999;118(3):441–4.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Hayashi H, Maeda M, Murakami S, Kumagai N, Chen Y, Hatayama T, Katoh M, Miyahara N, Yamamoto S, Yoshida Y, Nishimura Y, Kusaka M, Fujimoto W, Otsuki T. Soluble interleukin-2 receptor as an indicator of immunological disturbance found in silicosis patients. Int J Immunopathol Pharmacol. 2009;22(1):53–62.  https://doi.org/10.1177/039463200902200107.PubMedGoogle Scholar
  29. 29.
    Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Kawakami Y, Kusaka M, Ueki H, Kita S, Ueki A. Soluble Fas mRNA is dominantly expressed in cases with silicosis. Immunology. 1998;94(2):258–62.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Otsuki T, Miura Y, Nishimura Y, Hyodoh F, Takata A, Kusaka M, Katsuyama H, Tomita M, Ueki A, Kishimoto T. Alterations of Fas and Fas-related molecules in patients with silicosis. Exp Biol Med (Maywood). 2006;231(5):522–33.Google Scholar
  31. 31.
    Otsuki T, Tomokuni A, Sakaguchi H, Aikoh T, Matsuki T, Isozaki Y, Hyodoh F, Ueki H, Kusaka M, Kita S, Ueki A. Over-expression of the decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC) derived from silicosis patients. Clin Exp Immunol. 2000;119(2):323–7.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Pitti RM, Marsters SA, Lawrence DA, Roy M, Kischkel FC, Dowd P, Huang A, Donahue CJ, Sherwood SW, Baldwin DT, Godowski PJ, Wood WI, Gurney AL, Hillan KJ, Cohen RL, Goddard AD, Botstein D, Ashkenazi A. Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature. 1998;396(6712):699–703.  https://doi.org/10.1038/25387.PubMedGoogle Scholar
  33. 33.
    Ashkenazi A, Dixit VM. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol. 1999;11(2):255–60.PubMedGoogle Scholar
  34. 34.
    Ueki H, Kohda M, Nobutoh T, Yamaguchi M, Omori K, Miyashita Y, Hashimoto T, Komai A, Tomokuni A, Ueki A. Antidesmoglein autoantibodies in silicosis patients with no bullous diseases. Dermatology. 2001;202(1):16–21.  https://doi.org/10.1159/000051578.PubMedGoogle Scholar
  35. 35.
    Ueki A, Isozaki Y, Tomokuni A, Tanaka S, Otsuki T, Kishimoto T, Kusaka M, Aikoh T, Sakaguchi H, Hydoh F. Autoantibodies detectable in the sera of silicosis patients. The relationship between the anti-topoisomerase I antibody response and HLA-DQB1∗0402 allele in Japanese silicosis patients. Sci Total Environ. 2001;270(1–3):141–8.PubMedGoogle Scholar
  36. 36.
    Ueki A, Isozaki Y, Tomokuni A, Hatayama T, Ueki H, Kusaka M, Shiwa M, Arikuni H, Takeshita T, Morimoto K. Intramolecular epitope spreading among anti-caspase-8 autoantibodies in patients with silicosis, systemic sclerosis and systemic lupus erythematosus, as well as in healthy individuals. Clin Exp Immunol. 2002;129(3):556–61.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ueki A, Isozaki Y, Kusaka M. Anti-caspase-8 autoantibody response in silicosis patients is associated with HLA-DRB1, DQB1 and DPB1 alleles. J Occup Health. 2005;47(1):61–7.PubMedGoogle Scholar
  38. 38.
    Takata-Tomokuni A, Ueki A, Shiwa M, Isozaki Y, Hatayama T, Katsuyama H, Hyodoh F, Fujimoto W, Ueki H, Kusaka M, Arikuni H, Otsuki T. Detection, epitope-mapping and function of anti-Fas autoantibody in patients with silicosis. Immunology. 2005;116(1):21–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Lee S, Hayashi H, Mastuzaki H, Kumagai-Takei N, Otsuki T. Silicosis and autoimmunity. Curr Opin Allergy Clin Immunol. 2017;17(2):78–84.  https://doi.org/10.1097/ACI.0000000000000350.PubMedGoogle Scholar
  40. 40.
    Lee S, Hayashi H, Kumagai-Takei N, Matsuzaki H, Yoshitome K, Nishimura Y, Uragami K, Kusaka M, Yamamoto S, Ikeda M, Hatayama T, Fujimoto W, Otsuki T. Clinical evaluation of CENP-B and Scl-70 autoantibodies in silicosis patients. Exp Ther Med. 2017;13(6):2616–22.  https://doi.org/10.3892/etm.2017.4331.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lee S, Hayashi H, Kumagai-Takei N, Matsuzaki H, Yoshitome K, Sada N, Kusaka M, Uragami K, Nishimura Y. Autoantibodies in silicosis patients: silica-induced dysregulation of autoimmunity. In: Alikhan W, editor. Autoantibodies and cytokines. London (in press): Intech Open Limited.Google Scholar
  42. 42.
    Kumagai N, Hayashi H, Maeda M, Miura Y, Nishimura Y, Matsuzaki H, Lee S, Fujimoto W, Otsuki T. Immunological effects of silica and related dysregulation of autoimmunity. In: Mavragani CP, editor. Autoimmune disorders - pathogenetic aspects. London: InTech Open Access Publisher; 2011. p. 157–74.Google Scholar
  43. 43.
    Hayashi H, Nishimura Y, Hyodo F, Maeda M, Kumagai N, Miura Y, Kusaka M, Uragami K, Otsuki T. Dysregulation of autoimmunity caused by silica exposure: fas-mediated apoptosis in t lymphocytes derived from silicosis patients. In: Petro ME, editor. Autoimmune disorders: symptoms, diagnosis and treatment. Hauppauge, NY: Nova Science Publishers; 2011. p. p293–301.Google Scholar
  44. 44.
    Chen MH, Kan HT, Liu CY, Yu WK, Lee SS, Wang JH, Hsieh SL. Serum decoy receptor 3 is a biomarker for disease severity in nonatopic asthma patients. J Formos Med Assoc. 2017 Jan;116(1):49–56.  https://doi.org/10.1016/j.jfma.2016.01.007.PubMedGoogle Scholar
  45. 45.
    Maeda T, Miura Y, Fukuda K, Hayashi S, Kurosaka M. Decoy receptor 3 regulates the expression of tryptophan hydroxylase 1 in rheumatoid synovial fibroblasts. Mol Med Rep. 2015;12(4):5191–6.  https://doi.org/10.3892/mmr.2015.4097.PubMedGoogle Scholar
  46. 46.
    Liang D, Hou Y, Lou X, Chen H. Decoy receptor 3 improves survival in Experimental sepsis by suppressing the inflammatory response and lymphocyte apoptosis. PLoS One. 2015;10(6):e0131680.  https://doi.org/10.1371/journal.pone.0131680.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Siakavellas SI, Sfikakis PP, Bamias G. The TL1A/DR3/DcR3 pathway in autoimmune rheumatic diseases. Semin Arthritis Rheum. 2015;45(1):1–8.  https://doi.org/10.1016/j.semarthrit.2015.02.007.PubMedGoogle Scholar
  48. 48.
    Xiu Z, Shen H, Tian Y, Xia L, Lu J. Serum and synovial fluid levels of tumor necrosis factor-like ligand 1A and decoy receptor 3 in rheumatoid arthritis. Cytokine. 2015;72(2):185–9.  https://doi.org/10.1016/j.cyto.2014.12.026.PubMedGoogle Scholar
  49. 49.
    Liu J, Zhao Z, Zou Y, Zhang M, Zhou Y, Li Y, Pang Z, Jin W. The expression of death decoy receptor 3 was increased in the patients with primary Sjögren's syndrome. Clin Rheumatol. 2015;34(5):879–85.  https://doi.org/10.1007/s10067-014-2853-2.PubMedGoogle Scholar
  50. 50.
    Chen MH, Liu PC, Chang CW, Chen YA, Chen MH, Liu CY, Leu CM, Lin HY. Decoy receptor 3 suppresses B cell functions and has a negative correlation with disease activity in rheumatoid arthritis. Clin Exp Rheumatol. 2014;32(5):715–23.PubMedGoogle Scholar
  51. 51.
    ILO. Occupational Safety and Health Series No. 22 (Rev. 2011) Guidelines for the use of the ILO International Classification of Radiographs of Pneumoconioses (Revised edition 2011). Geneva: ILO Geneva, International Labour Office; 2011.Google Scholar
  52. 52.
    Jabłońska S, Błaszczyk M, Jarzabek-Chorzelska M, Chorzelski T, Kołacińska-Strasz Z. Immunological markers of the subsets of systemic scleroderma and its overlap. Arch Immunol Ther Exp. 1991;39(4):381–90.Google Scholar
  53. 53.
    Harvey GR, McHugh NJ. Serologic abnormalities in systemic sclerosis. Curr Opin Rheumatol. 1999;11(6):495–502.PubMedGoogle Scholar
  54. 54.
    Dick T, Mierau R, Bartz-Bazzanella P, Alavi M, Stoyanova-Scholz M, Kindler J, Genth E. Coexistence of antitopoisomerase I and anticentromere antibodies in patients with systemic sclerosis. Ann Rheum Dis. 2002;61(2):121–7.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Hamaguchi Y. Autoantibody profiles in systemic sclerosis: predictive value for clinical evaluation and prognosis. J Dermatol. 2010;37(1):42–53.  https://doi.org/10.1111/j.1346-8138.2009.00762.x.PubMedGoogle Scholar
  56. 56.
    Jones RB. Rituximab in the treatment of anti-neutrophil cytoplasm antibody-associated vasculitis. Nephron Clin Pract. 2014;128(3–4):243–9.  https://doi.org/10.1159/000368580.PubMedGoogle Scholar
  57. 57.
    Daikeler T, Kistler AD, Martin PY, Vogt B, Huynh-Do U. The role of rituximab in the treatment of ANCA-associated vasculitides (AAV). Swiss Med Wkly. 2015;145:w14103.  https://doi.org/10.4414/smw.2015.14103.PubMedGoogle Scholar
  58. 58.
    Moog P, Thuermel K. Spotlight on rituximab in the treatment of antineutrophil cytoplasmic antibody-associated vasculitis: current perspectives. Ther Clin Risk Manag. 2015;11:1749–58.  https://doi.org/10.2147/TCRM.S79080.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Khalil N, Greenberg AH. The role of TGF-beta in pulmonary fibrosis. Ciba Found Symp. 1991;157:194–207.PubMedGoogle Scholar
  60. 60.
    Branton MH, Kopp JB. TGF-beta and fibrosis. Microbes Infect. 1999;1(15):1349–65.PubMedGoogle Scholar
  61. 61.
    Ihn H. The role of TGF-beta signaling in the pathogenesis of fibrosis in scleroderma. Arch Immunol Ther Exp. 2002;50(5):325–31.Google Scholar
  62. 62.
    Cutroneo KR. TGF-beta-induced fibrosis and SMAD signaling: oligo decoys as natural therapeutics for inhibition of tissue fibrosis and scarring. Wound Repair Regen. 2007;15 Suppl 1:S54–60.  https://doi.org/10.1111/j.1524-475X.2007.00226.x.PubMedGoogle Scholar
  63. 63.
    Guillevin L. Rituximab for ANCA-associated vasculitides. Clin Exp Rheumatol. 2014;32(3 Suppl 82):S118–21.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Suni Lee
    • 1
  • Shoko Yamamoto
    • 1
  • Hiroaki Hayashi
    • 2
  • Hidenori Matsuzaki
    • 1
    • 3
  • Naoko Kumagai-Takei
    • 1
  • Tamayo Hatayama
    • 1
  • Min Yu
    • 1
    • 4
    • 5
  • Kei Yoshitome
    • 1
  • Masayasu Kusaka
    • 6
  • Yasumitsu Nishimura
    • 1
  • Takemi Otsuki
    • 1
    Email author
  1. 1.Department of Hygiene, Kawasaki Medical SchoolOkayamaJapan
  2. 2.Department of Dermatology, Kawasaki Medical SchoolOkayamaJapan
  3. 3.Department of Life Science, Faculty of Life and Environmental SciencePrefectural University of HiroshimaHiroshimaJapan
  4. 4.Department of Occupational and Environmental Health ScienceSchool of Public Health, Peking UniversityBeijingChina
  5. 5.Department of Occupational Diseases, Zhejiang Academy of Medical SciencesZhejiangChina
  6. 6.Kusaka HospitalOkayamaJapan

Personalised recommendations