Continuous Sorption of Chlorpyrifos from Aqueous Solution Using Endoskeleton Powder of Sepia officinalis

  • Karthikumar SankarEmail author
  • Shyam Kumar Rajaram
  • I. Ganesh Moorthy
  • K. Naresh
  • S. Vaitheeswaran
  • R. K. Akash Kumar
  • G. R. Murary Viyas
  • P. N. Karl J. Samuel
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


The present study explores the applicability of endoskeleton powder from cuttlefish (Sepia officinalis) as an adsorbent for removal of chlorpyrifos, a noxious pesticide which causes neuronal disorders in human by inhibiting acetylcholinesterase. The physiochemical properties such as surface area, particle size, elemental analysis, functional group analysis of the adsorbent were studied. The maximum adsorption capacity of cuttlebone powder was 131.5 mg g−1. It was found that intra-particle diffusion is not a rate limiting step in adsorption. In fixed bed column adsorption studies, the effect of initial chlorpyrifos concentration, column bed height and feed flow rate on breakthrough curve was analyzed. The breakthrough point and exhaustion point appeared faster at higher column bed height and lower flow rate. Higher initial chlorpyrifos concentration reduced the time of breakthrough and exhaustion point. The experimental data fitted very well with Yoon–Nelson and Thomas models than that of Adams–Bohart model. Overall, 98% of pesticide removal was achieved at initial chlorpyrifos concentration, 0.4 mg L−1, bed height, 10 cm and flow rate, 1.0 mL min−1


Chlorpyrifos Sepia officinalis Cuttlebone Fixed bed column Kinetics Breakthrough curve 



The authors gratefully acknowledge the management Kamaraj College of Engineering and Technology, S.P.G.C. Nagar, K. Vellakular-625701, Near Virudhunagar-626001, for the facilities provided to carry out this work.


  1. 1.
    Panchal M, Kapoor C, Singh PS (2016) Next generation indian agriculture: role of crop protection solutions. Federation of Indian Chambers of Commerce and Industry (FICCI) and TATA Strategic Management Group (TSMG)Google Scholar
  2. 2.
    Christensen K, Harper B, Luukinen B, Buhl K, Stone D (2009) Chlorpyrifos technical fact sheet. National Pesticide Information Center, Oregon State University Extension ServicesGoogle Scholar
  3. 3.
    Rathod AL, Garg RK (2017) Chlorpyrifos poisoning and its implications in human fatal cases: a forensic perspective with reference to Indian scenario. J Forensic Leg Med 47:29–34CrossRefGoogle Scholar
  4. 4.
    Lotti M, Moretto A (2005). Organophosphate-induced delayed polyneuropathy [Research Support, Non-U S Gov’t Review]. Toxicol Rev 24(1):37–49Google Scholar
  5. 5.
    Dehghani MH, Niasar ZS, Mehrnia MR, Shayeghi M, Al-Ghouti MA, Heibati B, McKay G, Yetilmezsoy K (2017) Optimizing the removal of organophosphorus pesticide malathion from water using multi-walled carbon nanotubes. Chem Eng J 310:22–32CrossRefGoogle Scholar
  6. 6.
    Moradeeya PG, Kumar MA, Thorat RB, Rathod M, Khambhaty Y, Basha S (2017) Nanocellulose for biosorption of chlorpyrifos from water: chemometric optimization, kinetics and equilibrium. Cellulose 24(3):1319–1332CrossRefGoogle Scholar
  7. 7.
    Wanjeri VWO, Sheppard CJ, Prinsloo ARE, Ngila JC, Ndungu PG (2018) Isotherm and kinetic investigations on the adsorption of organophosphorus pesticides on graphene oxide based silica coated magnetic nanoparticles functionalized with 2-phenylethylamine. J Environ Chem Eng 6(1):1333–1346CrossRefGoogle Scholar
  8. 8.
    Amiri H, Nabizadeh R, Silva Martinez S, Jamaleddin Shahtaheri S, Yaghmaeian K, Badiei A, Nazmara S, Naddafi K (2018) Response surface methodology modeling to improve degradation of Chlorpyrifos in agriculture runoff using TiO2 solar photocatalytic in a raceway pond reactor. Ecotoxicol Environ Saf 147:919–925CrossRefGoogle Scholar
  9. 9.
    Dominguez CM, Oturan N, Romero A, Santos A, Oturan MA (2018). Removal of organochlorine pesticides from lindane production wastes by electrochemical oxidation. Environ Sci Pollut ResGoogle Scholar
  10. 10.
    Ramos-Delgado NA, Gracia-Pinilla MA, Maya-Trevino L, Hinojosa-Reyes L, Guzman-Mar JL, Hernandez-Ramirez A (2013) Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J Hazard Mater 263(Pt 1):36–44CrossRefGoogle Scholar
  11. 11.
    Mohammad SG, Ahmed SM (2017) Preparation of environmentally friendly activated carbon for removal of pesticide from aqueous media. Int J Ind Chem 8(2):121–132CrossRefGoogle Scholar
  12. 12.
    Mandal A, Singh N, Purakayastha TJ (2017) Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci Total Environ 577:376–385CrossRefGoogle Scholar
  13. 13.
    Mayakaduwa SS, Herath I, Ok YS, Mohan D, Vithanage M (2017) Insights into aqueous carbofuran removal by modified and non-modified rice husk biochars. Environ Sci Pollut Res 24(29):22755–22763CrossRefGoogle Scholar
  14. 14.
    Tran VS, Ngo HH, Guo W, Zhang J, Liang S, Ton-That C, Zhang X (2015) Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Biores Technol 182:353–363CrossRefGoogle Scholar
  15. 15.
    Cadman J, Zhou S, Chen Y, Li Q (2012) Cuttlebone: characterisation, application and development of biomimetic materials. J Bionic Eng 9(3):367–376CrossRefGoogle Scholar
  16. 16.
    Sankar K, Achary A, Mehala N, Rajendran L (2017) Empirical and analytical correlation of the reaction kinetics parameters of cuttle bone powder immobilized lipase catalyzed ethyl ferulate synthesis. Catal Lett 147(8):2232–2245CrossRefGoogle Scholar
  17. 17.
    Poompradub S, Ikeda Y, Kokubo Y, Shiono T (2008) Cuttlebone as reinforcing filler for natural rubber. Eur Polymer J 44(12):4157–4164CrossRefGoogle Scholar
  18. 18.
    Palaveniene A, Harkavenko V, Kharchenko V, Daugela P, Pranskunas M, Juodzbalys G, Babenko N, Liesiene J (2018) Cuttlebone as a marine-derived material for preparing bone grafts. Marine biotechnology. engGoogle Scholar
  19. 19.
    Vibhatabandhu Pathompong, Srithongouthai S (2017) Removal of Pb (II) from an aqueous solution using modified cuttlebone as a biosorbent. Environ Asia 10(1):10Google Scholar
  20. 20.
    Mehrizad A (2017) Adsorption studies of some phenol derivatives onto Ag-cuttlebone nanobiocomposite: modeling of process by response surface methodology. Res Chem Intermed 43(7):4295–4310CrossRefGoogle Scholar
  21. 21.
    Khedri N, Ramezani Z, Rahbar N (2016) Fast, green and effective chromium bio-speciation using Sepia pharaonis endoskeleton nano-powder. Int J Environ Sci Technol 13(10):2475–2484CrossRefGoogle Scholar
  22. 22.
    Abdolali A, Ngo HH, Guo W, Zhou JL, Zhang J, Liang S, Chang SW, Nguyen DD, Liu Y (2017) Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column. Bioresour Technol 229:78–87Google Scholar
  23. 23.
    Xu Z, Cai J-g, Pan B-c (2013) Mathematically modeling fixed-bed adsorption in aqueous systems. J Zhejiang Univ Sci A. 14(3):155–176CrossRefGoogle Scholar
  24. 24.
    Cadman J, Zhou S, Chen Y, Li W, Appleyard R, Li Q (2010) Characterization of cuttlebone for a biomimetic design of cellular structures [journal article]. Acta Mech Sin 26(1):27–35CrossRefGoogle Scholar
  25. 25.
    Ivankovic H, Tkalcec E, Orlic S, Ferrer GG, Schauperl Z (2010) Hydroxyapatite formation from cuttlefish bones: kinetics [Evaluation Studies Research Support, Non-U S Gov’t]. J Mater Sci Mater Med 21(10):2711–2722Google Scholar
  26. 26.
    Periasamy K, Mohankumar GC (2015) Sea coral-derived cuttlebone reinforced epoxy composites: characterization and tensile properties evaluation with mathematical models. J Compos Mater 50(6):807–823CrossRefGoogle Scholar
  27. 27.
    Sankar K, Achary A (2019) Bio-ceramic, mesoporous cuttlebone of Sepia officinalis is an ideal support for the immobilization of Bacillus subtilis AKL13 lipase: optimization, adsorption, thermodynamic and reaction kinetic studies. Chemical PapersGoogle Scholar
  28. 28.
    Al-Qodah Z, Shawaqfeh AT, Lafi WK (2007) Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination 208(1–3):294–305CrossRefGoogle Scholar
  29. 29.
    Brahima S, Patrick D, Pablo GM et al (2014) Adsorption of an organochlorine pesticide using activated carbon produced from an agro-waste material. J Chem Technol Biotechnol 89(12):1811–1816CrossRefGoogle Scholar
  30. 30.
    Aljeboree AM, Alshirifi AN, Alkaim AF (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian J Chem 10:S3381–S3393CrossRefGoogle Scholar
  31. 31.
    Inyinbor AA, Adekola FA, Olatunji GA (2016) Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour Ind 15:14–27CrossRefGoogle Scholar
  32. 32.
    Adhikari S, Chattopadhyay P, Ray L (2012) Continuous removal of malathion by immobilised biomass of Bacillus species S14 using a packed bed column reactor. Chem Speciat Bioavailab 24(3):167–175CrossRefGoogle Scholar
  33. 33.
    López-Cervantes J, Sánchez-Machado DI, Sánchez-Duarte RG, Correa-Murrieta MA (2017) Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan–glutaraldehyde biosorbent. Adsorpt Sci Technol 36(1–2):215–232Google Scholar
  34. 34.
    Aksu Z, Gönen F (2004) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem 39(5):599–613CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Karthikumar Sankar
    • 1
    Email author
  • Shyam Kumar Rajaram
    • 1
  • I. Ganesh Moorthy
    • 1
  • K. Naresh
    • 1
  • S. Vaitheeswaran
    • 1
  • R. K. Akash Kumar
    • 1
  • G. R. Murary Viyas
    • 1
  • P. N. Karl J. Samuel
    • 1
  1. 1.Department of BiotechnologyKamaraj College of Engineering and TechnologyMadurai Dist.India

Personalised recommendations