Optimization of Mechanical Components by the Improved Grey Wolf Optimization

  • Prabhjit Singh
  • Sanjeev SainiEmail author
  • Ankush Kohli
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


Optimization means the demonstration of detecting the optimal outcome under specific circumstances. Engineers need to take numerously specialized as well as supervisory decisions in various design phases, construction, and industrial system maintenance. The main target of every such decision is either to restrain the work necessitated or raise the profit. As the profit wanted or the work required in any situation of real world can be expressed as a specific decision variable’s function, optimization can be characterized as the way towards discovering the conditions that provide maximum or minimum function values. Complex problems of optimization while solving with traditional numerical methods had mathematical downsides. This is the reason because of which researchers had to be dependent on meta-heuristic techniques. Meta-heuristics have turned out to be amazingly usual due to its local optima avoidance, simplicity and flexibility characteristics. IGWO is a new meta-heuristic inspired by grey wolves. In this paper, the implementation of improved grey wolf optimization is done for the optimization of pressure vessel design and welded beam design that have various salient engineering applications. The comparison of achieved results with some other approaches reveals the efficacy of IGWO algorithm to solve these significant mechanical engineering design optimization problems.


IGWO Pressure vessel design Welded beam design 


  1. 1.
    Kaveh, A., Talatahari, S.: An improved ant colony optimization for constrained engineering design problems. Eng. Comput. (Swansea, Wales) 27(1), 155–182 (2010)Google Scholar
  2. 2.
    Man, K.F., Tang, K.S., Kwong, S.: Genetic algorithms: concepts and applications. IEEE Trans. Ind. Electron. 43(5), 519–534 (1996)CrossRefGoogle Scholar
  3. 3.
    Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)zbMATHCrossRefGoogle Scholar
  4. 4.
    Yong, W., Gang, Z., Pei-chann, C.: Improved evolutionary programming algorithm and its application research on the optimization of ordering plan. Syst. Eng. Theory Pract. 29(6), 172–177 (2009)CrossRefGoogle Scholar
  5. 5.
    Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). E Comput. 11(1), 1–18 (2003)Google Scholar
  6. 6.
    Mezura-Montes, E., Coello Coello, C.A., Hernandez-Aguirre, A.: Using evolution strategies to solve constrained optimization problems. E Algorithms Intell. Tools Eng. Optim. 04 (2004)Google Scholar
  7. 7.
    Simon, D.: Biogeography-based optimization. IEEE Trans. E Comput. 12(6), 702–713 (2008)CrossRefGoogle Scholar
  8. 8.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  9. 9.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95—International Conference on Neural Networks, vol. 4, 1942–1948 (1995)Google Scholar
  10. 10.
    Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Webster, B., Bernhard, P.: A local search optimization algorithm based on natural principles of gravitation. In: Proceedings of the International Conference on Information and Knowledge Engineering, vol. 1, p. 18 (2003)Google Scholar
  12. 12.
    Erol, O.K., Eksin, I.: A new optimization method: Big Bang-Big Crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)CrossRefGoogle Scholar
  13. 13.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. (NY) 179(13), 2232–2248 (2009)zbMATHCrossRefGoogle Scholar
  14. 14.
    Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3–4), 267–289 (2010)zbMATHCrossRefGoogle Scholar
  15. 15.
    Formato, R.A.: Central force optimization: a new metaheuristic with applications in applied. Prog. Electromagn. Res. 77, 425–491 (2007)Google Scholar
  16. 16.
    Alatas, B.: ACROA: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38(10), 13170–13180 (2011)CrossRefGoogle Scholar
  17. 17.
    Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)CrossRefGoogle Scholar
  18. 18.
    David, C.N.D., Stephen, S.E.A., Joe, A.: Cost minimization of welded beam DESIGN problem using PSO, SA, PS, GODLIKE, CUCKOO, FF, FP, ALO, GSA and MVO. Int. J. Appl. Math. Stat. Sci. 5(1), 1–14 (2016)Google Scholar
  19. 19.
    Deb, K.: Optimal design of a welded beam via genetic algorithms. AIAA J. 29(11), 2013–2015 (1991)CrossRefGoogle Scholar
  20. 20.
    Ragsdell, K.M., Phillips, D.T.: Optimal design of a class of welded structures using geometric programming. J. Eng. Ind. 98(3), 1021–1025 (1976)CrossRefGoogle Scholar
  21. 21.
    Kannan, B.K.: An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J. Mech. Des. 116(2), 405–411 (1994)Google Scholar
  22. 22.
    Deb, K., Pratap, A., Moitra, S.: Mechanical component design for multiple objectives using elitist non-dominated sorting GA. In: Parallel Problem Solving from Nature PPSN VI, pp. 859–868. Springer, Berlin, Heidelberg (2000)Google Scholar
  23. 23.
    Coello Coello, C.A.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41(2), 113–127 (2000)Google Scholar
  24. 24.
    Yildiz, A.R.: Hybrid Taguchi-harmony search algorithm for solving engineering optimization problems. Int. J. Ind. Eng. Theory Appl. Pract. 15(3), 286–293 (2008)Google Scholar
  25. 25.
    Mosavi, A., Vaezipour, A.: Reactive search optimization: application to multiobjective optimization problems. Appl. Math. 03(10), 1572–1582 (2012)CrossRefGoogle Scholar
  26. 26.
    Cagnina, L.C., Esquivel, S.C., Nacional, U., Luis, D.S., Luis, S., Coello, C.A.C.: Solving engineering optimization problems with the simple constrained particle swarm optimizer. Eng. Optim. 32, 319–326 (2008)Google Scholar
  27. 27.
    Hasançebi, O., Azad, K.: An efficient metaheuristic algorithm for engineering optimization: SOPT. Int. J. Optim. Civ. Eng. 2(4), 479–487 (2012)Google Scholar
  28. 28.
    Thakur, N., Keane, A.J., Nair, P.B.: Estimating the effect of manufacturing variability on turbine blade life. In: 4th International Workshop on Reliable Engineering Computing (REC 2010) (2010).
  29. 29.
    Reddy, M.J., Kumar, D.N.: An efficient multi-objective optimization algorithm based. Eng. Optim. 39(1), 49–68 (2007)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Janga Reddy, M., Nagesh Kumar, D.: An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design. Eng. Optim. 39(1), 49–68 (2007)Google Scholar
  31. 31.
    Lee, K.S., Geem, Z.W.: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 194(36–38), 3902–3933 (2005)zbMATHCrossRefGoogle Scholar
  32. 32.
    Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Kazemzadeh Azad, S., Hasancebi, O. Erol, O.K.: Evaluating efficiency of big-bang big-crunch algorithm in benchmark engineering optimization problems. Int. J. Optim. Civ. Eng. 1(3), 495–505 (2011)Google Scholar
  34. 34.
    Sarkar, M.: Multi-objective welded beam design optimization using T-norm and T-co-norm based intuitionistic fuzzy optimization technique. Adv. Fuzzy Math. 12(3), 549–575 (2017)Google Scholar
  35. 35.
    Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problems and engineering design optimization. J. Intell. Manuf. 23(4), 1001–1014 (2012)CrossRefGoogle Scholar
  36. 36.
    Pham, D.T., Ghanbarzadeh, A., Otri, S., Koç, E.: Optimal design of mechanical components using the bees algorithm. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 223(5), 1051–1056 (2009)Google Scholar
  37. 37.
    Zhuo Huang, F., Wang, L., He, Q.: An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 186(1), 340–356 (2007)Google Scholar
  38. 38.
    Zhou, Y., Zhou, G., Zhang, J.: A hybrid glowworm swarm optimization algorithm for constrained engineering design problems. Appl. Math. Inf. Sci. 7(1), 379–388 (2013)CrossRefGoogle Scholar
  39. 39.
    Lin, G.H., Zhang, J., Liu, Z.H.: Hybrid particle swarm optimization with differential evolution for numerical and engineering optimization. Int. J. Autom. Comput. 15(1), 103–114 (2018)CrossRefGoogle Scholar
  40. 40.
    Parsopoulos, K.E., Vrahatis, M.N.: Unified particle swarm optimization for solving constrained engineering optimization problems. Adv. Nat. Comput. 3612, 582–591 (2005)Google Scholar
  41. 41.
    Ray, T., Liew, K.M.: Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Trans. E Comput. 7(4), 386–396 (2003)CrossRefGoogle Scholar
  42. 42.
    Muangkote, N., Sunat, K., Chiewchanwattana, S.: An improved grey wolf optimizer for training q-Gaussian radial basis functional-link nets. In: 2014 International Computer Science and Engineering Conference ICSEC 2014, pp. 209–214 (2014)Google Scholar
  43. 43.
    Gupta, S.R., Vora, C.P.: A review paper on pressure vessel design and analysis. Int. J. Eng. Res. Technol. 3(3), 295–300 (2014)Google Scholar
  44. 44.
    Vasava, A., Vasava, J., Patel, S.: Design and analysis of pressure vessel amalgamating with selection of material used in marine application. Int. J. Innov. Res. Sci. Eng. Technol. 2(6), 2035–2042 (2013)Google Scholar
  45. 45.
    Lu, Y.Q., Hui, H.: Investigation on mechanical behaviors of cold stretched and cryogenic stretched austenitic stainless steel pressure vessels. Procedia Eng. 130, 628–637 (2015)CrossRefGoogle Scholar
  46. 46.
    Weil, N.A., Murphy, J.J.: Design and analysis of welded pressure-vessel skirt supports. J. Eng. Ind. 82(1), 1 (1960)Google Scholar
  47. 47.
    Raparla, S.K.: Design and analysis of multilayer high pressure vessels. Int. J. Eng. Res. Appl. 2(1), 355–361 (2012)Google Scholar
  48. 48.
    Gedam, A.C.: Stress analysis of pressure vessel with different end connections. Int. J. Mech. Eng. 3(11), 19–27 (2015)MathSciNetGoogle Scholar
  49. 49.
    Saidpatil, V.V., Thakare, A.S.: Design & weight optimization of pressure vessel due to thickness using finite element analysis. Int. J. Emerg. Eng. Res. Technol. 2(3), 1–8 (2014)Google Scholar
  50. 50.
    Liu, P.-F., Xu, P., Han, S.-X., Zheng, J.-Y.: Optimal design of pressure vessel using an improved genetic algorithm. J. Zhejiang Univ. Sci. A 9(9), 1264–1269 (2008)zbMATHCrossRefGoogle Scholar
  51. 51.
    Dalgleish, T., et al.: Chemical engineering design. J. Exp. Psychol. Gen. 136(1), 23–42 (2007)CrossRefGoogle Scholar
  52. 52.
    Rahman, N.A., Sheikh Abdullah, S.R., Ali, N.M.: Interactive short cut method for pressure vessel design based on asme code. J. Eng. Sci. Technol. 10(1), 53–60 (2015)Google Scholar
  53. 53.
    Sathe, A.A., Maurya, V.R., Tamhane, S.V., Save, A.P., Nikam, P.V.: Design and analysis of pressure vessel components as per ASME Sec. VIII Div. III. IJEDR 6(1), 834–840 (2018)Google Scholar
  54. 54.
    Zhu, L., Boyle, J.T.: Optimal shapes for axisymmetric pressure vessels: a brief overview. J. Press. Vessel Technol. Trans. ASME 122(4), 443–449 (2000)CrossRefGoogle Scholar
  55. 55.
    Ramakrishnan, C.V., Francavilla, A.: Structural shape optimization using penalty functions. J. Struct. Mech. 3(4), 403–422 (1974)CrossRefGoogle Scholar
  56. 56.
    Queau, J.P., Trompette, P.: Two-dimensional shape optimal design by the finite element method. Int. J. Numer. Methods Eng. 15(11), 1603–1612 (1980)zbMATHCrossRefGoogle Scholar
  57. 57.
    Li, Y.: Sensitivity analysis in shape optimization design for a pressure vessel. Int. J. Press. Vessels Pip. 49(3), 387–397 (1992)CrossRefGoogle Scholar
  58. 58.
    Hinton, E., Rao, N.V.R., Sienz, J.: Finite element structural shape and thickness optimization of axisymmetric shells. Eng. Comput. 9(5), 499–527 (1992)CrossRefGoogle Scholar
  59. 59.
    Boisserie, J.M., R. Glowinski, Optimization of the thickness law for thin axisymmetric shells, 1978Google Scholar
  60. 60.
    Marcelin, J.L., Trompette, P.: Optimal shape design of thin axisymmetric shells. Eng. Optim. 13(2), 109–117 (1988)CrossRefGoogle Scholar
  61. 61.
    Błachut, J.: Minimum weight of internally pressurised domes subject to plastic load failure. Thin-Walled Struct. 27(2), 127–146 (1997)CrossRefGoogle Scholar
  62. 62.
    Błachut, J., Ramachandra, L.S.: Optimization of internally pressurised torispheres subject to shakedown via GAs. Eng. Optim. 29(1–4), 113–129 (1997)CrossRefGoogle Scholar
  63. 63.
    Pornsing, C., Saichareon, K., Karot, T.: A modified particle swarm optimization for engineering constrained optimization problems. Int. J. Comput. Sci. Electron. Eng. 3(1), 1–5 (2015)Google Scholar
  64. 64.
    Mech, L.D.: Alpha status, dominance, and division of labor in wolf packs. Can. J. Zool. 77(8), 1196–1203 (1999)CrossRefGoogle Scholar
  65. 65.
    Muro, C., Escobedo, R., Spector, L., Coppinger, R.P.: Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav. Processes 88(3), 192–197 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.I.K. Gujral Punjab Technical UniversityKapurthalaIndia
  2. 2.Department of Mechanical EngineeringDAV Institute of Engineering and TechnologyJalandharIndia

Personalised recommendations