Advertisement

Learning Analytics as a Breakthrough in Educational Improvement

  • Francisco José García-PeñalvoEmail author
Chapter
  • 30 Downloads
Part of the Lecture Notes in Educational Technology book series (LNET)

Abstract

Learning analytics has become a reference area in the field of Learning Technologies as the mixture of different technical and methodological approaches in the capture, treatment and representation of educational data for later use in decision-making processes. With approximately ten years of development, it can be considered that learning analytics have abandoned their stage of dispersion and are heading towards a state of maturity that will position them as a fundamental piece in educational practice mediated by technology. However, it cannot be ignored that the power and goodness of these analytics must be channelled to improve learning itself and, therefore, the learning-teaching process, always acting from an ethical sense and preserving the privacy of the people who participate because it is straightforward to invade personal spaces in favour of the objectives sought. This chapter presents, from a conceptual perspective, the reference models that support the creation of educational strategies based on learning analytics that integrate the most current trends in the field, defined from a critical perspective that balances the undoubted benefits with the potential risks.

Keywords

Learning analytics Educational improvement Reference models Trends Risks 

Notes

Acknowledgements

This work was supported in part by the Spanish Ministry of Science, Innovation, and Universities throughout the DEFINES Project under Grant TIN2016-80172-R.

References

  1. Agudo-Peregrina, Á. F., Iglesias-Pradas, S., Conde-González, M. Á., & Hernández-García, Á. (2014). Can we predict success from log data in VLEs? Classification of interactions for learning analytics and their relation with performance in VLE-supported F2F and online learning. Computers in Human Behavior, 31, 542–550.  https://doi.org/10.1016/j.chb.2013.05.031.CrossRefGoogle Scholar
  2. Alier Forment, M., Amo Filvà, D., García-Peñalvo, F. J., Fonseca Escudero, D., & Casañ, M. J. (2018). Learning analytics’ privacy on the blockchain. In F. J. García-Peñalvo (Ed.), TEEM’18 Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality (Salamanca, Spain, October 24th–26th, 2018) (pp. 294–298). New York, NY, USA: ACM.Google Scholar
  3. Almosallam, E. A., & Ouertani, H. C. (2014). Learning analytics: definitions, applications and related fields. A study for future challenges. In T. Herawan, M. M. Deris, & J. Abawajy (Eds.), Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013) (pp. 721–730). Singapore: Springer Science + Business Media.Google Scholar
  4. Amo-Filvà, D. A., Alier Forment, M., García-Peñalvo, F. J., Fonseca-Escudero, D., & Casañ, M. J. (2019). Clickstream for learning analytics to assess students’ behavior with scratch. Future Generation Computer Systems, 93, 673–686.  https://doi.org/10.1016/j.future.2018.10.057.CrossRefGoogle Scholar
  5. Andres, J. M. L., ¡Baker, R. S., Gašević, D., Siemens, G., Crossley, S. A., & Joksimović, S. (2018). Studying MOOC completion at scale using the MOOC replication framework. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge—LAK′18 (Sydney, New South Wales, Australia—March 07–09, 2018) (pp. 7178). New York, NY, USA: ACM.Google Scholar
  6. Bach, C. (2010). Learning analytics: Targeting instruction, curricula and student support. Paper presented at the Education and Information Systems, Technologies and Applications Conference, Orlando, FL, USA.Google Scholar
  7. Berlanga, A. J., & García-Peñalvo, F. J. (2008). Learning design in adaptive educational hypermedia systems. Journal of Universal Computer Science, 14(22), 3627–3647.  https://doi.org/10.3217/jucs-014-22-3627.CrossRefGoogle Scholar
  8. Burgos, D., Tattersall, C., & Koper, R. (2007). Representing adaptive and adaptable units of learning. In B. Fernández-Manjón, J. M. Sánchez-Pérez, J. A. Gómez-Pulido, M. A. Vega-Rodríguez, & J. Bravo-Rodríguez (Eds.), Computers and education: E-learning, from theory to practice (pp. 41–56). Dordrecht: Springer, Netherlands.CrossRefGoogle Scholar
  9. Campbell, J. P., DeBlois, P. B., & Oblinger, D. G. (2007). Academic analytics. A new tool for a new era. Educause Review, 42(4), 40–42,44,46,48,50,52,54,56–57.Google Scholar
  10. Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5/6), 318–331.  https://doi.org/10.1504/ijtel.2012.051815.CrossRefGoogle Scholar
  11. Clow, D. (2012). The learning analytics cycle: closing the loop effectively. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, LAK ′12 (Vancouver, BC, Canada, 29 April–2 May 2012) (pp. 134–138). New York, NY, USA: ACM.Google Scholar
  12. Cobos, R., & Macías Palla, V. (2017). edX-MAS: Model analyzer system. In Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing Multiculturality―TEEM 2017 (Cádiz, Spain—October 18–20, 2017). New York, NY, USA: ACM.Google Scholar
  13. Conde-González, M. Á., & Hernández-García, Á. (2015). Learning analytics for educational decision making. Computers in Human Behavior, 47, 1–3.  https://doi.org/10.1016/j.chb.2014.12.034.CrossRefGoogle Scholar
  14. Conde-González, M. Á., Hernández-García, Á., García-Peñalvo, F. J., & Sein-Echaluce, M. L. (2015). Exploring student interactions: Learning analytics tools for student tracking. In P. Zaphiris & I. Ioannou (Eds.), Learning and Collaboration Technologies. Second International Conference, LCT 2015, Held as Part of HCI International 2015 (Los Angeles, CA, USA, August 2–7, 2015, Proceedings) (pp. 50–61). Switzerland: Springer International Publishing.Google Scholar
  15. Doroudi, S., & Brunskill, E. (2019). Fairer but not fair enough on the equitability of knowledge tracing. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge—LAK’19 (Tempe, AZ, USA—March 04–08, 2019) (pp. 335–339). New York, NY, USA: ACM.Google Scholar
  16. Elias, T. (2011). Learning analytics: Definitions, processes and potential. Retrieved from https://bit.ly/2mh3EKD.
  17. Fancsali, S. E., Zheng, G., Tan, Y., Ritter, S., Berman, S. R., & Galyardt, A. (2018). Using embedded formative assessment to predict state summative test scores. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge—LAK’18 (Sydney, New South Wales, Australia—March 07–09, 2018) (pp. 161–170). New York, NY, USA: ACM.Google Scholar
  18. Farhan, M., Munwar, I. M., Aslam, M., Martínez Enríquez, A. M., Farooq, A., Tanveer, S., & Mejia, A. P. (2012). Automated reply to students’ queries in e-learning environment using Web-BOT. In Proceedings of the 2012 11th Mexican International Conference on Artificial Intelligence (San Luis Potosi, Mexico - 27 Oct.-4 Nov. 2012) (pp. 63–65). USA: IEEE.Google Scholar
  19. Feild, J., Lewkow, N., Burns, S., & Gebhardt, K. (2018). A generalized classifier to identify online learning tool disengagement at scale. In Proceedings of the 8th International Conference on Learning Analytics and Knowledge—LAK′18 (Sydney, New South Wales, Australia—March 07–09, 2018) (pp. 61-70). New York, NY, USA: ACM.Google Scholar
  20. Felten, P. (2008). Visual Literacy. Change: The Magazine of Higher Learning, 40(6), 60–64.  https://doi.org/10.3200/chng.40.6.60-64.
  21. Ferguson, R. (2012). Learning analytics: Drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304–317.  https://doi.org/10.1504/ijtel.2012.051816.CrossRefGoogle Scholar
  22. Fidalgo-Blanco, Á., Sein-Echaluce, M. L., & García-Peñalvo, F. J. (2016). From massive access to cooperation: Lessons learned and proven results of a hybrid xMOOC/cMOOC pedagogical approach to MOOCs. International Journal of Educational Technology in Higher Education (ETHE), 13, 24.  https://doi.org/10.1186/s41239-016-0024-z.CrossRefGoogle Scholar
  23. Fidalgo-Blanco, Á., Sein-Echaluce, M. L., García-Peñalvo, F. J., & Conde-González, M. Á. (2015). Using learning analytics to improve teamwork assessment. Computers in Human Behavior, 47, 149–156.  https://doi.org/10.1016/j.chb.2014.11.050.CrossRefGoogle Scholar
  24. Frank, M., Roehrig, P., & Pring, B. (2017). What to do when machines do everything: How to get ahead in a world of AI, algorithms, bots, and big data. Hoboken, New Jersey, USA: Wiley.Google Scholar
  25. García-Holgado, A., & García-Peñalvo, F. J. (2019). Validation of the learning ecosystem metamodel using transformation rules. Future Generation Computer Systems, 91, 300–310.  https://doi.org/10.1016/j.future.2018.09.011.CrossRefGoogle Scholar
  26. García-Peñalvo, F. J. (2018). Ecosistemas tecnológicos universitarios. In J. Gómez (Ed.), UNIVERSITIC 2017. Análisis de las TIC en las Universidades Españolas (pp. 164–170). Madrid, España: Crue Universidades Españolas.Google Scholar
  27. García-Peñalvo, F. J., Cruz-Benito, J., Martín-González, M., Vázquez-Ingelmo, A., Sánchez-Prieto, J. C., & Therón, R. (2018a). Proposing a machine learning approach to analyze and predict employment and its factors. International Journal of Interactive Multimedia and Artificial Intelligence, 5(2), 39–45.  https://doi.org/10.9781/ijimai.2018.02.002.CrossRefGoogle Scholar
  28. García-Peñalvo, F. J., Fidalgo-Blanco, Á., & Sein-Echaluce, M. L. (2018b). An adaptive hybrid MOOC model: Disrupting the MOOC concept in higher education. Telematics and Informatics, 35, 1018–1030.  https://doi.org/10.1016/j.tele.2017.09.012.CrossRefGoogle Scholar
  29. García-Peñalvo, F. J., & Seoane-Pardo, A. M. (2015). An updated review of the concept of eLearning. Tenth anniversary. Education in the Knowledge Society, 16(1), 119–144. http://dx.doi.org/10.14201/eks2015161119144.
  30. Gašević, D., Dawson, S., & Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends, 59(1), 64–71.  https://doi.org/10.1007/s11528-014-0822-x.CrossRefGoogle Scholar
  31. Goldstein, P. J., & Katz, R. N. (2005). Academic analytics: The uses of management information and technology in higher education. ECAR Research Study, 8. Retrieved from https://bit.ly/2kP3I41.
  32. Gómez-Aguilar, D. A., García-Peñalvo, F. J., & Therón, R. (2014). Analítica visual en eLearning. El Profesional de la Información, 23(3), 236–245.  https://doi.org/10.3145/epi.2014.may.03.CrossRefGoogle Scholar
  33. Gómez-Aguilar, D. A., Hernández-García, Á., García-Peñalvo, F. J., & Therón, R. (2015). Tap into visual analysis of customization of grouping of activities in eLearning. Computers in Human Behavior, 47, 60–67.  https://doi.org/10.1016/j.chb.2014.11.001.CrossRefGoogle Scholar
  34. Gómez-Aguilar, D. A., Therón, R., & García-Peñalvo, F. J. (2009). Semantic spiral timelines used as support for e-Learning. Journal of Universal Computer Science, 15(7), 1526–1545.  https://doi.org/10.3217/jucs-015-07-1526.CrossRefGoogle Scholar
  35. Graham, C. R. (2006). Blended learning systems: Definition, current trends, and future directions. In C. J. Bonk & C. R. Graham (Eds.), The handbook of blended learning: Global perspectives, local designs (pp. 3–21). San Francisco, USA: JosseyBass/Pfeiffer.Google Scholar
  36. Greller, W., & Drachsler, H. (2012). Translating learning into numbers: A generic framework for learning analytics. Journal of Educational Technology & Society, 15(3), 42–57.Google Scholar
  37. Gros, B., & García-Peñalvo, F. J. (2016). Future trends in the design strategies and technological affordances of e-learning. In M. Spector, B. B. Lockee, & M. D. Childress (Eds.), Learning, design, and technology. An international compendium of theory, research, practice, and policy (pp. 1–23). Switzerland: Springer International Publishing.Google Scholar
  38. Jiang, W., Pardos, Z. A., & Wei, Q. (2019). Goal-based course recommendation. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge—LAK19 (Tempe, AZ, USA—March 04–08, 2019) (pp. 36-45). New York, NY, USA: ACM.Google Scholar
  39. Johnson, L., Smith, R., Willis, H., Levine, A., & Haywood, K. (2011). NMC horizon report: 2011 higher education edition. Retrieved from https://bit.ly/2kpMie8.
  40. Keim, D. A., Andrienko, G., Fekete, J., Görg, C., Kohlhammer, J., & Melançon, G. (2008). Visual analytics: Definition, process, and challenges. In A. Kerren, J. Stasko, J. Fekete, & C. North (Eds.), Information visualization (pp. 154–175). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  41. Keim, D. A., Kohlhammer, J., Ellis, G., & Mansmann, F. (Eds.). (2010). Mastering the information age solving problems with visual analytics. Goslar, Germany: Eurographics Association.Google Scholar
  42. Keim, D. A., & Zhang, L. (2011). Solving problems with visual analytics: challenges and applications. In Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies—i-KNOW ′11 (Graz, Austria—September 07–09, 2011). New York, NY, USA: ACM.Google Scholar
  43. Leony, D., Pardo, A., de la Fuente Valentín, L., de Castro, D. S., & Kloos, C. D. (2012). GLASS: A learning analytics visualization tool. In Proceedings of the 2nd International Conference on Learning Analytics and Knowledge—LAK′12 (Vancouver, British Columbia, Canada—April 29–May 02, 2012) (pp. 162–163). New York, NY, USA: ACM.Google Scholar
  44. Lerís, D., & Sein-Echaluce, M. L. (2011). La personalización del aprendizaje: Un objetivo del paradigma educativo centrado en el aprendizaje. Arbor, 187(Extra_3), 123–134.  https://doi.org/10.3989/arbor.2011.extra-3n3135.
  45. Lerís, D., Sein-Echaluce, M. L., Hernández, M., & Bueno, C. (2017). Validation of indicators for implementing an adaptive platform for MOOCs. Computers in Human Behavior, 72, 783–795.  https://doi.org/10.1016/j.chb.2016.07.054.CrossRefGoogle Scholar
  46. Lerís, D., Sein-Echaluce, M. L., Hernández, M., & Fidalgo-Blanco, Á. (2016). Participantes heterogéneos en MOOCs y sus necesidades de aprendizaje adaptativo. Education in the Knowledge Society, 17(4), 91–109.  https://doi.org/10.14201/eks201617491109.
  47. Liz-Domínguez, M., Caeiro-Rodríguez, M., Llamas-Nistal, M., & Mikic-Fonte, F. (2019). Predictors and early warning systems in higher education—A systematic literature review. In M. Caeiro-Rodríguez, Á. Hernández-García, & P. J. Muñoz-Merino (Eds.), Proceedings of LASI-SPAIN 2019. Learning Analytics Summer Institute Spain 2019: Learning Analytics in Higher Education (Vigo, Spain, June 27–28, 2019) (pp. 84–99). Aachen, Germany: CEUR-WS.org.Google Scholar
  48. Long, P. D., & Siemens, G. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30–32.Google Scholar
  49. Lu, Y., & Hsiao, I.-H. (2019). Exploring programming semantic analytics with deep learning models. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge—LAK′19 (Tempe, AZ, USA—March 04–08, 2019) (pp. 155–159). New York, NY, USA: ACM.Google Scholar
  50. Mangaroska, K., Vesin, B., & Giannakos, M. (2019). Cross-platform analytics: A step towards personalization and adaptation in education. In Proceedings of the 9th International Conference on Learning Analytics & Knowledge—LAK′19 (Tempe, AZ, USA—March 04–08, 2019) (pp. 71–75). New York, NY, USA: ACM.Google Scholar
  51. Munce, S. E. P., & Archibald, M. M. (2016). “The future of mixed methods: A five year projection to 2020”: An early career perspective. Journal of Mixed Methods Research, 11(1), 11–14.  https://doi.org/10.1177/1558689816676659.CrossRefGoogle Scholar
  52. Palomo Duarte, M., Balderas, A., Dodero, J. M., Reinoso, A. J., Caballero, J. A., & Delatorre, P. (2018). Integrating quantitative and qualitative data in assessment of wiki collaborative assignments. In F. J. García-Peñalvo (Ed.), Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality—TEEM 2018 (Salamanca, Spain—October 24–26, 20189 (pp. 328–332). New York, NY, USA: ACM.Google Scholar
  53. Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135–146.  https://doi.org/10.1016/j.eswa.2006.04.005.CrossRefGoogle Scholar
  54. Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 40(6), 601–618.  https://doi.org/10.1109/tsmcc.2010.2053532.CrossRefGoogle Scholar
  55. Sein-Echaluce, M. L., Fidalgo-Blanco, Á., & García-Peñalvo, F. J. (2017). Adaptive and cooperative model of knowledge management in MOOCs. In P. Zaphiris & A. Ioannou (Eds.), Learning and Collaboration Technologies. Novel Learning Ecosystems. 4th International Conference, LCT 2017. Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9–14, 2017. Proceedings, Part I (pp. 273–284). Switzerland: Springer International Publishing.Google Scholar
  56. Sein-Echaluce, M. L., Fidalgo-Blanco, Á., García-Peñalvo, F. J., & Conde-González, M. Á. (2016). iMOOC platform: Adaptive MOOCs. In P. Zaphiris & I. Ioannou (Eds.), Learning and Collaboration Technologies. Third International Conference, LCT 2016, Held as Part of HCI International 2016, Toronto, ON, Canada, July 17–22, 2016, Proceedings (pp. 380–390). Switzerland: Springer International Publishing.Google Scholar
  57. Shneiderman, B. (1996). The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings of 1996 IEEE Symposium on Visual Languages (3–6 Sept. 1996, Boulder, CO, USA, USA) (pp. 336–343). EEUU: IEEE.Google Scholar
  58. Siemens, G. (2010). What are learning analytics? Retrieved from https://bit.ly/2PcZKQE.
  59. Siemens, G. (2013). Learning analytics. The emergence of a discipline. American Behavioral Scientist, 57(10), 1380–1400.  https://doi.org/10.1177/0002764213498851.
  60. Tanes, Z., Arnold, K. E., King, A. S., & Remnet, M. A. (2011). Using signals for appropriate feedback: Perceptions and practices. Computers & Education, 57(4), 2414–2422.  https://doi.org/10.1016/j.compedu.2011.05.016.CrossRefGoogle Scholar
  61. van Barneveld, A., Arnold, K. E., & Campbell, J. P. (2012). Analytics in higher education: Establishing a common language. EDUCAUSE Learning Initiative, 1, 1–11.Google Scholar
  62. Vázquez-Ingelmo, A., García-Peñalvo, F. J., & Therón, R. (2019). Information dashboards and tailoring capabilities—A systematic literature review. IEEE Access, 7, 109673–109688.  https://doi.org/10.1109/access.2019.2933472.
  63. Vázquez-Ingelmo, A., García-Peñalvo, F. J., Therón, R., & Conde, M. Á. (2019). Extending a dashboard meta-model to account for users’ characteristics and goals for enhancing personalization. In M. Caeiro-Rodríguez, Á. Hernández-García, & P. J. Muñoz-Merino (Eds.), Proceedings of LASI-SPAIN 2019. Learning Analytics Summer Institute Spain 2019: Learning Analytics in Higher Education (Vigo, Spain, June 27–28, 2019) (pp. 35–42). Aachen, Germany: CEUR-WS.org.Google Scholar
  64. Verbert, K., Duval, E., Klerkx, J., Govaerts, S., & Santos, J. L. (2013). Learning analytics dashboard applications. American Behavioral Scientist, 57(10), 1500–1509.  https://doi.org/10.1177/0002764213479363.CrossRefGoogle Scholar
  65. Villamañe, M., Álvarez, A., Larrañaga, M., Caballero, J., & Hernández-Rivas, O. (2018). Using visual learning analytics to support competence-based learning. In Proceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality—TEEM 2018 (Salamanca, Spain—October 24–26, 2018) (pp. 333–338). New York, NY, USA: ACM.Google Scholar
  66. Worsley, M. (2018). (Dis)engagement matters: identifying efficacious learning practices with multimodal learning analytics. Proceedings of the 8th International Conference on Learning Analytics and Knowledge—LAK′18 (Sydney, New South Wales, Australia—March 07–09, 2018) (pp. 365–369). New York, NY, USA: ACM.Google Scholar
  67. Yu, H., Miao, C., Leung, C., & White, T. J. (2017). Towards AI-powered personalization in MOOC learning. npj Science of Learning, 2(1), 15.  https://doi.org/10.1038/s41539-017-0016-3.

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.GRIAL Research Group, Computer Science DepartmentResearch Institute for Educational Sciences, University of Salamanca, Facultad de Ciencias. Plaza de Los CaídosSalamancaSpain

Personalised recommendations