Advertisement

Effect of TiO2/Ag Nanocomposite Loading on the Optical Properties of Chitosan Film

  • Melda TaspikaEmail author
  • Resetiana Dwi Desiati
  • Eni Sugiarti
Conference paper
  • 51 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Effect of TiO2/Ag loading on the optical properties of chitosan film will be studied in this report. Herein, TiO2/Ag-chitosan composite films were prepared by solution casting method in wet phase separation using potassium hydroxide (KOH) to produce free-standing films. Field emission scanning electron microscopy (FE-SEM) images show the encapsulated TiO2/Ag particles and the agglomeration of TiO2/Ag particles in chitosan which contributes to the absorption intensity and the band-gap energy of composite films. The increase of TiO2/Ag loading in chitosan leads to the increase of the absorbance intensity and the decrease of optical band-gap energy from 5.2 to 4.6 eV. Additionally, the transparency of composite films decreases with the increase of dispersed TiO2/Ag particles.

Keywords

TiO2/Ag composite Chitosan film Wet phase separation Optical properties 

References

  1. 1.
    Dette C et al (2014) TiO2 anatase with a bandgap in the visible region. Nano Lett 14(11):6533–6538CrossRefGoogle Scholar
  2. 2.
    Zimbone M et al (2015) Photocatalytical and antibacterial activity of TiO2 nanoparticles obtained by laser ablation in water. Appl Catal B 165:487–494CrossRefGoogle Scholar
  3. 3.
    Evtushenko YM et al (2015) Optical properties of TiO2 thin films. Phys Proc 73:100–107CrossRefGoogle Scholar
  4. 4.
    Harikishore M et al (2014) Effect of Ag doping on antibacterial and photocatalytic activity of nanocrystalline TiO2. Proc Mater Sci 6:557–566CrossRefGoogle Scholar
  5. 5.
    Desiati RD, Taspika M, Sugiarti E (2019) Effect of calcination temperature on the antibacterial activity of TiO2/Ag nanocomposite. Mater Res ExpressGoogle Scholar
  6. 6.
    Wu S et al (2018) Staphylococcus aureus isolated from retail meat and meat products in China: incidence, antibiotic resistance and genetic diversity. Front Microbiol 9:2767CrossRefGoogle Scholar
  7. 7.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  8. 8.
    Pang Y et al (2017) Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo. Oncotarget 8(22):35583CrossRefGoogle Scholar
  9. 9.
    Goy RC, Morais STB, Assis OBG (2016) Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia 26(1):122–127CrossRefGoogle Scholar
  10. 10.
    Apjok R et al (2019) Active packaging based on cellulose-chitosan-Ag/TiO2 nanocomposite for storage of clarified butter. Cellulose 26(3):1923–1946CrossRefGoogle Scholar
  11. 11.
    Cozmuta AM et al (2018) Active papers coated with chitosan and containing TiO2 and Ag/TiO2 nanoparticles for increasing the shelf-life of walnut kernels. Cellulose 25(9):5205–5225CrossRefGoogle Scholar
  12. 12.
    Jbeli A et al (2018) Chitosan-Ag–TiO2 films: an effective photocatalyst under visible light. Carbohyd Polym 199:31–40CrossRefGoogle Scholar
  13. 13.
    Natarajan S et al (2016) Antibacterial and antifouling activities of chitosan/TiO2/Ag NPs nanocomposite films against packaged drinking water bacterial isolates. Environ Sci Pollut Res 23(19):19529–19540CrossRefGoogle Scholar
  14. 14.
    Natarajan S et al (2017) Antifouling activities of pristine and nanocomposite chitosan/TiO2/Ag films against freshwater algae. RSC Adv 7(44):27645–27655CrossRefGoogle Scholar
  15. 15.
    Natarajan S et al (2018) Antifouling and anti-algal effects of chitosan nanocomposite (TiO2/Ag) and pristine (TiO2 and Ag) films on marine microalgae Dunaliella salina. J Environ Chem Eng 6(6):6870–6880CrossRefGoogle Scholar
  16. 16.
    Vaseeharan B, Sivakamavalli J, Thaya R (2015) Synthesis and characterization of chitosan-ZnO composite and its antibiofilm activity against aquatic bacteria. J Compos Mater 49(2):177–184CrossRefGoogle Scholar
  17. 17.
    Saleviter S et al (2018) Optical and structural characterization of immobilized 4-(2-pyridylazo) resorcinol in chitosan-graphene oxide composite thin film and its potential for Co2+ sensing using surface plasmon resonance technique. Results Phys 11:118–122CrossRefGoogle Scholar
  18. 18.
    Pushparekha et al (2019) Design, fabrication and studies on optical properties of new hybrid chitosan films doped with 1,3,4-oxadiazole derivatives for down conversion and photoluminescence applications. Opt Mater 89:80–91CrossRefGoogle Scholar
  19. 19.
    Abdullah OG et al (2015) Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite. J Mater Sci: Mater Electron 26(7):5303–5309MathSciNetGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Melda Taspika
    • 1
    Email author
  • Resetiana Dwi Desiati
    • 1
  • Eni Sugiarti
    • 1
  1. 1.Research Center for Physics, Indonesian Institute of SciencesSouth TangerangIndonesia

Personalised recommendations