Mini Review on Effect of Coatings on the Performance of Magnetorheological Materials

  • S. K. Mohd. Jamari
  • U. Ubaidillah
  • Siti Aishah Abdul Aziz
  • Nur Azmah NordinEmail author
  • A. Fajrin
  • Saiful Amri Mazlan
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Magnetorheological materials have attracted a great deal of interests nowadays due to its controllable mechanical properties upon the application of external magnetic field. Its ability to change its rheological properties in a split second has found its way in the applications that require absorption and isolation of vibration and noise. However, the problems with oxidation, sedimentation and aggregation of the magnetic particles hinder the optimum performance that can be utilised with this smart material. This includes the reduced performance of yield stress, shear stress, shear modulus and storage modulus and over a long operational period, will affect its magnetisation properties. Hence, there is a need to protect the magnetic particles with coating layer which can overcome these drawbacks. The main focus of this work is to present an overview on the aforementioned problems in MR materials that can be controlled by applying protective coating on the magnetic particles. Several works have reported the enhancement of performances such as oxidation resistance, interface between particles and the carrier medium as well as sedimentation stability by introducing coated magnetic particles in the MR materials.


Magnetorheological Coating Oxidation Rheology Magnetic particles 


  1. 1.
    Stenberg B, Lokander M, Reitberger T (2004) Magnetorheological elastomers—possibilities and limitations. Annu Trans Nordic Rheol Soc 12:163–170Google Scholar
  2. 2.
    Li W, Zhang X, Du H (2013) Magnetorheological elastomers and their applications. In: Visakh PM, Thomas S, Chandra AK, Mathew AP (eds) Advances in elastomers I: blends and interpenetrating networks. Springer, Berlin, pp 357–374CrossRefGoogle Scholar
  3. 3.
    Hu B, Fuchs A, Huseyin S, Gordaninejad F, Evrensel C (2006) Atom transfer radical polymerized MR fluids. Polymer (Guildf) 47:7653–7663CrossRefGoogle Scholar
  4. 4.
    Carlson JD, Jolly MR (2000) MR fluid, foam and elastomer devices. Mechatronics 10:555–569CrossRefGoogle Scholar
  5. 5.
    Leong SAN et al (2016) An overview of nanoparticles utilization in magnetorheological materials. AIP Conf Proc 1710:020002CrossRefGoogle Scholar
  6. 6.
    Mazlan SA, Ekreem NB, Olabi AG (2008) An investigation of the behaviour of magnetorheological fluids in compression mode. J Mater Process Technol 201:780–785CrossRefGoogle Scholar
  7. 7.
    Malecki P, Krolewicz M, Krzak J, Kaleta J, Piglowski J (2015) Dynamic mechanical analysis of magnetorheological composites containing silica-coated carbonyl iron powder. J Intell Mater Syst Struct 26(14):1899–1905CrossRefGoogle Scholar
  8. 8.
    Ubaidillah, Sutrisno J, Purwanto A, Mazlan SA (2014) Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv Eng Mater 1–35Google Scholar
  9. 9.
    Plachy T, Kutalkova E, Sedlacik M, Vesel A, Masar M (2018) Impact of corrosion process of carbonyl iron particles on magnetorheological behavior of their suspensions. J Ind Eng Chem 66:362–369CrossRefGoogle Scholar
  10. 10.
    Zhang P, Zhen Y, Jin H, Lee C (2018) Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid. J Ind Eng Chem 68:342–349CrossRefGoogle Scholar
  11. 11.
    Lee JH, Choi HJ (2018) Synthesis of core-shell formed carbonyl iron/polydiphenylamine particles and their rheological response under applied magnetic fields. Colloid Polym Sci 296:1857–1865CrossRefGoogle Scholar
  12. 12.
    Wang G, Ma Y, Tong Y, Dong X (2017) Development of manganese ferrite/graphene oxide nanocomposites for magnetorheological fluid with enhanced sedimentation stability. J Ind Eng Chem 48:142–150CrossRefGoogle Scholar
  13. 13.
    Bramantya MA, Sawada T (2011) The influence of magnetic field swept rate on the ultrasonic propagation velocity of magnetorheological fluids. J Magn Magn Mater 323:1330–1333CrossRefGoogle Scholar
  14. 14.
    Lanzetta M, Iagnemma K (2013) Gripping by controllable wet adhesion using a magnetorheological fluid. CIRP Ann Manuf Technol 62(1):21–25CrossRefGoogle Scholar
  15. 15.
    Bica I, Anitas EM (2018) Magnetic field intensity effect on electrical conductivity of magnetorheological biosuspensions based on honey, turmeric and carbonyl iron. J Ind Eng Chem 64:276–283CrossRefGoogle Scholar
  16. 16.
    Mohamad N, Mazlan SA, Ubaidillah (2016) Effect of carbonyl iron particles composition on the physical characteristics of MR grease. AIP Conf Proc 1717:040027Google Scholar
  17. 17.
    Gordaninejad F, Miller M, Wang X, Sahin H, Fuchs A (2007) Study of a magneto-rheological grease (MRG) damper. In: Active and passive smart structures and integrated systems, vol 6525, pp 1–6Google Scholar
  18. 18.
    Zheng J, Li Y, Wang J, Shiju E, Li X (2018) Accelerated thermal aging of grease-based magnetorheological fluids and their lifetime prediction. Mater Res Express 5:085702CrossRefGoogle Scholar
  19. 19.
    Yang P, Yu M, Luo H, Fu J, Qu H, Xie Y (2017) Improved rheological properties of dimorphic magnetorheological gels based on flower-like carbonyl iron particles. Appl Surf Sci 416:772–780CrossRefGoogle Scholar
  20. 20.
    Sung G, Wan J, Hyeun J (2016) Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption. J Ind Eng Chem 44:99–104CrossRefGoogle Scholar
  21. 21.
    Bandarian M, Shojaei A, Rashidi AM (2011) Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: effect of surface functionality of nanotubes. Polym Int 60:475–482CrossRefGoogle Scholar
  22. 22.
    Baferani AH, Katbab AA, Ohadi AR (2017) The role of sonication time upon acoustic wave absorption efficiency, microstructure, and viscoelastic behavior of flexible polyurethane/CNT nanocomposite foam. Eur Polym J 90:383–391CrossRefGoogle Scholar
  23. 23.
    Makarova LA et al (2019) Magnetorheological foams for multiferroic applications. J Magn Magn Mater 485:413–418CrossRefGoogle Scholar
  24. 24.
    Agirre-Olabide I, Kuzhir P, Elejabarrieta MJ (2018) Linear magneto-viscoelastic model based on magnetic permeability components for anisotropic magnetorheological elastomers. J Magn Magn Mater 446:155–161CrossRefGoogle Scholar
  25. 25.
    Seung HK, Ji SA, So YC, Kyoung HC, Hyoung JC (2019) Poly(glycidyl methacrylate) coated soft-magnetic carbonyl iron/silicone rubber composite elastomer and its magnetorheology. Macromol ResGoogle Scholar
  26. 26.
    Guan X, Dong X, Ou J (2008) Magnetostrictive effect of magnetorheological elastomer. J Magn Magn Mater 320:158–163CrossRefGoogle Scholar
  27. 27.
    Abdul Aziz SA et al (2018) Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomer. Smart Mater Struct 25:077001CrossRefGoogle Scholar
  28. 28.
    Yunus NA et al (2016) Rheological properties of isotropic magnetorheological elastomers featuring epoxidised natural rubber. Smart Mater Struct 25:107001CrossRefGoogle Scholar
  29. 29.
    Lokander M, Reitberger T, Stenberg B (2004) Oxidation of natural rubber-based magnetorheological elastomers. Polym Degrad Stab 86(3):467–471CrossRefGoogle Scholar
  30. 30.
    Cvek M, Mrlik M, Ilcikova M, Mosnacek J, Munster L, Pavliner V (2017) Synthesis of silicone elastomers containing silyl-based polymer-grafted carbonyl iron particles: an efficient way to improve magnetorheological, damping, and sensing performances. Macromolecules 50(5):2189–2200CrossRefGoogle Scholar
  31. 31.
    Yao J, Sun Y, Wang Y, Fu Q, Xiong Z, Liu Y (2018) Magnet-induced aligning magnetorheological elastomer based on ultra-soft matrix. Compos Sci Technol 162:170–179CrossRefGoogle Scholar
  32. 32.
    Wu J, Gong X, Chen L, Xia H, Hu Z (2009) Preparation and characterization of isotropic polyurethane magnetorheological elastomer through in situ polymerization. J Appl Polym Sci 114:901–910CrossRefGoogle Scholar
  33. 33.
    Xu J et al (2018) The dynamic mechanical properties of magnetorheological plastomers under high strain rate. Compos Sci Technol 159:50–58CrossRefGoogle Scholar
  34. 34.
    Zhao W, Pang H, Gong X (2017) A novel magnetorheological plastomer filled with NdFeB particles: preparation, characterization and magnetic-mechanic coupling properties. Ind Eng Chem Res 56(31):8857–8863CrossRefGoogle Scholar
  35. 35.
    Xuan S, Zhang Y, Zhou Y, Gong X (2012) Magnetic plasticine: a versatile magnetorheological material. J Mater Chem 22:13395–13400CrossRefGoogle Scholar
  36. 36.
    Pu H, Jiang F, Wang Y, Yan B (2010) Soft magnetic composite particles of reduced iron coated with poly (p-xylylene) via chemical vapor deposition polymerization. Colloids Surf A Physicochem Eng Asp 361(1–3):62–65CrossRefGoogle Scholar
  37. 37.
    Wang G et al (2015) Facile synthesis and magnetorheological properties of superparamagnetic CoFe2O4/GO nanocomposites. Appl Surf Sci 357:2131–2135CrossRefGoogle Scholar
  38. 38.
    Schubert G, Harrison P (2016) Magnetic induction measurements and identification of the permeability of magneto-rheological elastomers using finite element simulations. J Magn Magn Mater 404:205–214CrossRefGoogle Scholar
  39. 39.
    Sohoni GB, Mark JE (1987) Anisotropic reinforcement in elastomers containing magnetic filler particles. J Appl Polym Sci 34(8):2853–2859CrossRefGoogle Scholar
  40. 40.
    Tian T, Nakano M (2018) Fabrication and characterisation of anisotropic magnetorheological elastomer with 45° iron particle alignment at various silicone oil concentrations. J Intell Mater Syst Struct 29(2):151–159CrossRefGoogle Scholar
  41. 41.
    Kukla M, Górecki J, Malujda I, Tala K, Tarkowski P (2017) The determination of mechanical properties of magnetorheological elastomers (MREs). Procedia Eng 177:324–330CrossRefGoogle Scholar
  42. 42.
    Puente-Córdova JG, Reyes-Melo ME, Palacios-Pineda LM, Martínez-Perales IA, Martínez-Romero O, Elías-Zúñiga A (2018) Fabrication and characterization of isotropic and anisotropic magnetorheological elastomers, based on silicone rubber and carbonyl iron microparticles. Polymers (Basel) 10(12):1343CrossRefGoogle Scholar
  43. 43.
    Sapouna K, Xiong YP, Shenoi RA (2017) Dynamic mechanical properties of isotropic/anisotropic silicon magnetorheological elastomer composites. Smart Mater Struct 26(11):115010CrossRefGoogle Scholar
  44. 44.
    Cvek M et al (2015) A facile controllable coating of carbonyl iron particles with poly (glycidyl methacrylate): a tool for adjusting MR response and stability properties. J Mater Chem C 3:4646–4656CrossRefGoogle Scholar
  45. 45.
    Nguyen P, Do X, Jeon J, Choi S, Liu YD, Choi HJ (2014) Brake performance of core–shell structured carbonyl iron/silica based magnetorheological suspension. J Magn Magn Mater 367:69–74CrossRefGoogle Scholar
  46. 46.
    Park BJ, Kim MS, Choi HJ (2009) Fabrication and magnetorheological property of core/shell structured magnetic composite particle encapsulated with cross-linked poly (methyl methacrylate). Mater Lett 63(24–25):2178–2180CrossRefGoogle Scholar
  47. 47.
    Tae HM, Hyoung JC, Kim N-H, Park K, You C-Y (2017) Effects of surface treatment on magnetic carbonyl iron/polyaniline microspheres and their magnetorheological study. Colloids Surf A 531:48–55CrossRefGoogle Scholar
  48. 48.
    Hu ZD, Yan H, Qiu HZ, Zhang P, Liu Q (2012) Friction and wear of magnetorheological fluid under magnetic field. Wear 278–279:48–52CrossRefGoogle Scholar
  49. 49.
    Zhang P, Lee KH, Lee CH (2017) Fretting friction and wear characteristics of magnetorheological fluid under different magnetic field strengths. J Magn Magn Mater 421:13–18CrossRefGoogle Scholar
  50. 50.
    Jamari SKM (2015) Corrosion coatings using conducting polymer and green corrosion inhibitors. University of MalayaGoogle Scholar
  51. 51.
    Behrooz M, Sutrisno J, Zhang L, Fuchs A, Gordaninejad F (2015) Behavior of magnetorheological elastomers with coated particles. Smart Mater Struct 24(3):35026CrossRefGoogle Scholar
  52. 52.
    Roupec J, Mazurek I (2011) Stability of magnetorheological effect during long term operation. In: Jablonski R, Brezina T (eds) Mechatronics. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  53. 53.
    Fuchs A, Sutrisno J, Gordaninejad F, Caglar MB, Yanming L (2010) Surface polymerization of iron particles for magnetorheological elastomers. J Appl Polym Sci 117:934–942CrossRefGoogle Scholar
  54. 54.
    Yu M, Qi S, Fu J, Zhu M, Chen D (2017) Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Compos Sci Technol 139:36–46CrossRefGoogle Scholar
  55. 55.
    Cvek M et al (2015) The chemical stability and cytotoxicity of carbonyl iron particles grafted with poly (glycidyl methacrylate) and the magnetorheological activity of their suspensions. RSC Adv 5:72816–72824CrossRefGoogle Scholar
  56. 56.
    Fan M, He Z, Pang H (2013) Microwave absorption enhancement of CIP/PANI composites. Synth Met 166:1–6CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • S. K. Mohd. Jamari
    • 1
  • U. Ubaidillah
    • 2
    • 3
  • Siti Aishah Abdul Aziz
    • 1
  • Nur Azmah Nordin
    • 1
    Email author
  • A. Fajrin
    • 2
  • Saiful Amri Mazlan
    • 1
  1. 1.Malaysia-Japan International Institute of Technology, Universiti Teknologi MalaysiaKuala LumpurMalaysia
  2. 2.Mechanical Engineering Department, Faculty of EngineeringUniversitas Sebelas MaretSurakartaIndonesia
  3. 3.National Center for Sustainable Transportation Technology (NCSTT)BandungIndonesia

Personalised recommendations