Copy-Move Image Forgery Detection Using DCT and ORB Feature Set

  • Vikas Mehta
  • Ankit Kumar JaiswalEmail author
  • Rajeev Srivastava
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1206)


The unprecedented use of digital images and videos for communication, the ease of access and use of graphic editing applications have consequently led to the increased importance of detecting copy-move forgery. The proposed copy-move forgery detection (CMFD) technique relies on DCT and ORB feature extraction and distance-based clustering approach. Extracted DCT features are matched based on Euclidean distance. Extracted key-points using ORB are matched using k-NN procedure based on Hamming distances. To improve accuracy, false matches are removed with the help of a distance-based clustering technique. The proposed technique is applied for testing on CoMoFoD small dataset. Results on experimentation showcase that the technique is efficient in detecting copy-move forged regions and also robust towards brightness and contrast change, noise addition, geometric transformations like scaling and rotation and several forgeries. The proposed technique is compared with two state-of-the art techniques.


Copy-move image forgery Image forgery detection DCT ORB 


  1. 1.
    Agarwal, N., et al.: Survey of robust and imperceptible watermarking. Multimed. Tools Appl. 78(7), 8603–8633 (2019). Scholar
  2. 2.
    Alahmadi, A., et al.: Passive detection of image forgery using DCT and local binary pattern. Signal Image Video Process. (2017). Scholar
  3. 3.
    Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: IH and MMSec 2016 - Proceedings of the 2016 ACM Information Hiding and Multimedia Security Workshop (2016).
  4. 4.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). Scholar
  5. 5.
    Cozzolino, D., et al.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: IH and MMSec 2017 - Proceedings of the 2017 ACM Workshop on Information Hiding and Multimedia Security (2017).
  6. 6.
    El-Hallak, M., Lovell, D.: ORB an efficient. Arthritis Rheum. 65(10), 2736 (2013). Scholar
  7. 7.
    Emam, M., et al.: PCET based copy-move forgery detection in images under geometric transforms. Multimed. Tools Appl. (2016). Scholar
  8. 8.
    Fridrich, J., et al.: Detection of copy-move forgery in digital images. In: Digital Forensic Research Workshop (2003).
  9. 9.
    Hailing, H., et al.: Detection of copy-move forgery in digital images using sift algorithm. In: Proceedings - 2008 Pacific-Asia Workshop on Computational Intelligence and Industrial Application, PACIIA 2008 (2008).
  10. 10.
    Hakimi, F., et al.: Image splicing forgery detection using local binary pattern and discrete wavelet transform. In: 2015 2nd International Conference on Knowledge-Based Engineering and Innovation, KBEI 2015, pp. 1074–1077 (2016).
  11. 11.
    Hu, W.C., et al.: Effective image forgery detection of tampered foreground or background image based on image watermarking and alpha mattes. Multimed. Tools Appl. (2016). Scholar
  12. 12.
    Huang, Y., et al.: Improved DCT-based detection of copy-move forgery in images. Forensic Sci. Int. 206(1–3), 178–184 (2011). Scholar
  13. 13.
    Li, L. et al.: [2013 Li JIHMSP]20 + An efficient scheme for detecting copy-move forged images by local binary patterns. J. Inf. Hiding Multimed. Signal Process. (2013)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. (2004). Scholar
  15. 15.
    Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting duplicated image regions. IEEE Trans. Signal Process. (2004). Scholar
  16. 16.
    Rosten, E., Porter, R., Drummond, T.: Faster and better: A machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2010). Scholar
  17. 17.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). Scholar
  18. 18.
    Ryu, S.J., et al.: Detection of copy-rotate-move forgery using Zernike moments. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2010).
  19. 19.
    Tralic, D., et al.: CoMoFoD - new database for copy-move forgery detection. In: 55th International Symposium ELMAR (2013)Google Scholar
  20. 20.
    Wang, X.Y., et al.: Copy-move forgery detection based on compact color content descriptor and Delaunay triangle matching. Multimed. Tools Appl. 78(2), 2311–2344 (2019). Scholar
  21. 21.
    Wenchang, S., et al.: Improving image copy-move forgery detection with particle swarm optimization techniques. China Commun. (2016). Scholar
  22. 22.
    Wu, Y., Abd-Almageed, W., Natarajan, P.: BusterNet: detecting copy-move image forgery with source/target localization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 170–186. Springer, Cham (2018). Scholar
  23. 23.
    Yang, F., et al.: Copy-move forgery detection based on hybrid features. Eng. Appl. Artif. Intell. (2017). Scholar
  24. 24.
    Zhu, Y., et al.: Copy-move forgery detection based on scaled ORB. Multimed. Tools Appl. (2016). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vikas Mehta
    • 1
  • Ankit Kumar Jaiswal
    • 2
    Email author
  • Rajeev Srivastava
    • 2
  1. 1.Institute of TechnologyNirma UniversityAhmedabadIndia
  2. 2.Computing and Vision Lab, Department of Computer Science and EngineeringIndian Institute of Technology (BHU) VaranasiVaranasiIndia

Personalised recommendations