Advertisement

Microbial Cell Factories in Nanotechnology

  • Deepak Sharma
  • Reena Sharma
  • Abhishek ChaudharyEmail author
Chapter
  • 48 Downloads

Abstract

The nanotechnology is the fast-growing field that offers a huge application in various disciplines of science and technology. The nanoscale materials can be synthesized by physical, chemical, physicochemical, or biological methods. All the synthesis processes except biological process have some environmental and operational constraints. The biological synthesis process or green synthesis of these nanomaterials is an eco-friendly and cost-effective approach which utilizes bacteria, fungi, and plant sources. Biological systems are a good producer of nanoparticles such as magnetotactic bacteria that are capable of producing magnetite (Fe3O4), while diatoms are capable of producing siliceous materials. Magnetotactic bacteria produce magnetosomes which are greatly used for the immobilization of enzymes, antibodies, DNA, and RNA. Metal and microbial interactions are greatly involved in the processes like biomineralization, bioremediation, bioleaching, and microbial corrosion. Pseudomonas stutzeri AG259 is a metal-accumulating bacterium that has the capability to produce silver nanoparticles; fungi like Candida glabrata and Schizosaccharomyces pombe have the potential to produce cadmium sulfide particles. Schizosaccharomyces pombe has been well studied for its potential to detoxify cadmium from the environment by active intracellular uptake of cadmium and its bioconversion to small iso-peptides. In a summarized way, we can say microbes are the living factories for the generation of advanced materials.

Keywords

Nanoparticle Cell factory Nanosynthesis Bacteria Fungi Actinomycetes 

References

  1. Adrio JL, Deman AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108CrossRefGoogle Scholar
  3. Ahmad A, Senapati S, Khan MI, Kumar S, Sastry M (2003a) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic Actinomycete, Thermomonospora sp. Langmuir 19:3550CrossRefGoogle Scholar
  4. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Shrinivas V, Sastry M (2003b) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant Actinomycete, Rhodococcus species. Nanotechnology 14:824CrossRefGoogle Scholar
  5. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160CrossRefGoogle Scholar
  6. Choi Y, Parke TJ, Leed DC, Leea SY (2018) Recombinant Escherichia coli as a biofactory for various single- and multi-element nanomaterials. Proc Natl Acad Sci 115:5944CrossRefGoogle Scholar
  7. Curtis AS, Dalby M, Gadegaard N (2006) Cell signaling arising from nanotopography: implications for nanomedical devices. Nanomedicine 1:67CrossRefGoogle Scholar
  8. Dameron CT, Reeser RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwaldm ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596CrossRefGoogle Scholar
  9. Fu M, Li Q, Sun D, Lu Y, He N, Deng X, Wang H, Huang J (2006) Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chin J Chem Eng 14:114CrossRefGoogle Scholar
  10. Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22CrossRefGoogle Scholar
  11. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984CrossRefGoogle Scholar
  12. Hosea M, Greene B, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Accumulation of elemental gold on the alga Chlorella vulgaris. Inorg Chim Acta 123:161CrossRefGoogle Scholar
  13. Hulkoti NI, Taranath TC (2014) Biosynthesis of nanoparticles using microbes—a review. Colloids Surf B: Biointerfaces 121:474CrossRefGoogle Scholar
  14. Husseiny MI, Ei-Aziz MA, Bad RY, Mahmoud MA (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A 67:1003CrossRefGoogle Scholar
  15. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not 1:18Google Scholar
  16. Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3nanoparticles. Biochem Eng J 43:303CrossRefGoogle Scholar
  17. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145CrossRefGoogle Scholar
  18. Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Elango G, Zahir GA, Kamaraj C, Bagavan A (2015) Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Mater Lett 65:2745CrossRefGoogle Scholar
  19. Klaus T, Joerger R, Olsson E, Granqvist C (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96:13611CrossRefGoogle Scholar
  20. Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S (2006) Intracellular recovery of gold by microbial reduction of AuCl4 − ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81:24CrossRefGoogle Scholar
  21. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648CrossRefGoogle Scholar
  22. Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32:1026CrossRefGoogle Scholar
  23. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007a) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439CrossRefGoogle Scholar
  24. Kumar SA, Ayoobul AA, Absar A, Khan MI (2007b) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190CrossRefGoogle Scholar
  25. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507CrossRefGoogle Scholar
  26. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani RR, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001a) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585CrossRefGoogle Scholar
  27. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajay PV, Alam M, Kumar R, Sastry M (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515CrossRefGoogle Scholar
  28. Nair B, Pradeep T (2002) Coalescence of nano-clusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293CrossRefGoogle Scholar
  29. Niknejad F, Nabili M, Ghazvini D, Moazeni M (2015) Green synthesis of silver nanoparticles: advantages of the yeast Saccharomyces cerevisiae model. Curr Med Mycol 1:17PubMedPubMedCentralGoogle Scholar
  30. Ottoni CA, Simões MF, Fernandes S, Santos JG, Silva ES, De Souza RFB, Maiorano AE (2017) Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7:31CrossRefGoogle Scholar
  31. Priyadarshinia S, Gopinatha V, Priyadharsshinia NM, MubarakAli D, Velusamy P (2013) Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus, and its biomedical application. Colloids Surf B: Biointerfaces 102:232CrossRefGoogle Scholar
  32. Rueda F, Céspedes MV, Chardi AS, Franzoso JS, Pesarrodona M, Miralles NF, Vázquez E, Rinas U, Unzueta U, Mamat U, Mangues R, Fruitos EG, Villaverde A (2016) Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli. Microb Cell Factories 15:59CrossRefGoogle Scholar
  33. Sarikaya M, Tamerler C, Jen AK, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2:577CrossRefGoogle Scholar
  34. Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R (2005) Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1:517CrossRefGoogle Scholar
  35. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B: Biointerface s57:97CrossRefGoogle Scholar
  36. Van Dijl JM, Hecker M (2013) Bacillus subtilis: from soil bacterium to super-secreting cell factory. Microb Cell Factories 3:1Google Scholar
  37. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413CrossRefGoogle Scholar
  38. Villaverde A (2010) Nanotechnology, bionanotechnology, and microbial cell factories. Microb Cell Factories 9:53CrossRefGoogle Scholar
  39. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235CrossRefGoogle Scholar
  40. Vu XH, Tra Duong TT, Pham TTH, Trinh DK, Nguyen XH, Dang VS (2018) Synthesis and study of silver nanoparticles for antibacterial activity against Escherichia coli and Staphylococcus aureus. Adv Nat Sci Nanosci Nanotechnol 09:025019CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Deepak Sharma
    • 1
  • Reena Sharma
    • 2
  • Abhishek Chaudhary
    • 1
    Email author
  1. 1.Department of Biotechnology and BioinformaticsJaypee University of Information TechnologySolanIndia
  2. 2.School of Basic SciencesIndian Institute of Technology MandiKamandIndia

Personalised recommendations