Advertisement

Microbes Supporting Life Off-Planet

  • Shiwani Guleria Sharma
  • Mohit Sharma
Chapter
  • 51 Downloads

Abstract

Space microbiology pays attention toward possible microbial interactions in outer space or in distant shell of earth. Environmental conditions of outermost shell and space craft and their effect on microbiome need to be explored for basic understanding and for possible applied aspects. Various exposure facilities are developed for such studies. This chapter provides an overview about main aspects of space microbiologist, locations for research, their environment conditions, sample processing tools, and future aspects of space microbiology.

Keywords

Space International Space Station Next-generation sequencing Sequencing tools PCR 

References

  1. Bagnioli P, Sabbatini M, Horneck G (2007) Astrobiology experiments in low Earth orbit: facilities, instrumentation, and results. In: Horneck G, Rettberg P (eds) Complete course in astrobiology. Wiley-VCH, New York, pp 273–320Google Scholar
  2. Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, Fox GE, Nilsson HR, Pierson DL, Perry J et al (2015) Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome 3:50–68CrossRefGoogle Scholar
  3. Checinska Sielaff A, Urbaniak C, Malli Mohan GB, Stepanov VG, Tran Q, Wood JM, Minich J, McDonald D, Mayer T et al (2019) Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7:50CrossRefGoogle Scholar
  4. Edwards A et al (2017) Deep sequencing: intra-terrestrial metagenomics illustrates the potential of off-grid nanopore DNA sequencing. BioRxiv 133413Google Scholar
  5. Hoenen T et al (2016) Nanopore sequencing as a rapidly deployable Ebola outbreak tool. Emerg Infect Dis 22:331CrossRefGoogle Scholar
  6. Horneck G, Bucker H, Reitz G, Requardt H, Dose K, Martens KD, Mennigmann HD, Weber P (1984) Microorganisms in the space environment. Science 225:226–228CrossRefGoogle Scholar
  7. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74(1):121–156CrossRefGoogle Scholar
  8. Innocenti L and Mesland D A M (ed.). 1995. EURECA scientific results. Advances in space research 16(8) Elsevier, BedfordGoogle Scholar
  9. Jager T, Alexander J, Kirchen S, Dotsch A, Wieland A, Hiller C, Schwartz T (2018) Live-dead discrimination analysis, qPCR assessment for opportunistic pathogens, and population analysis at ozone wastewater treatment plants. Environ Pollut 232:571–579CrossRefGoogle Scholar
  10. Johnson SS, Zaikova E, Goerlitz DS, Bai Y, Tighe SW (2017) Real-time DNA sequencing in the antarctic dry valleys using the Oxford nanopore sequencer. J Biomol Tech 28(1):2–7CrossRefGoogle Scholar
  11. La Duc MT, Vaishampayan P, Nilsson HR, Torok T, Venkateswaran K (2012) Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars. Appl Environ Microbiol 78(16):5912–5922CrossRefGoogle Scholar
  12. Lin WT, Luo JF, Guo Y (2011) Comparison and characterization of microbial communities in sulfide-rich wastewater with and without propidium monoazide treatment. Curr Microbiol 62(2):374–381CrossRefGoogle Scholar
  13. NASA (2005) MR050L microbial analysis of ISS surfaces using the surface sampler kit (SSK) Edited by JSC28913 MRIDM. NASA, HoustonGoogle Scholar
  14. Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310–320CrossRefGoogle Scholar
  15. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK (2007) Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 73(16):5111–5117CrossRefGoogle Scholar
  16. Pace NR (2009) Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev 73(4):565–576CrossRefGoogle Scholar
  17. Quick J et al (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature 530:228–232CrossRefGoogle Scholar
  18. Rettberg P, Eschweiler U, Strauch K, Reitz G, Horneck G, Wanke H, Brack A, Barbier B (2002) Survival of microorganisms in space protected by meteorite material: results of the experiment EXOBIOLOGIE of the PERSEUS mission. Adv Space Res 30:1539–1545CrossRefGoogle Scholar
  19. Sarah LC-W, Chiu CY, John KK, Stahl SE, Rubins KH, McIntyre ABR et al (2017) Nanopore DNA sequencing and genome assembly on the International Space Station. Sci Rep 7:18022CrossRefGoogle Scholar
  20. Taylor G (1974) Space microbiology. Annu Rev Microbiol 28:121–137CrossRefGoogle Scholar
  21. Vaishampayan P, Probst AJ, La Duc MT, Bargoma E, Benardini JN, Andersen GL et al (2013) New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J 7(2):312–324CrossRefGoogle Scholar
  22. Yergeau E, Lawrence JR, Sanschagrin S, Waiser MJ, Korber DR, Greer CW (2012) Next-generation sequencing of microbial ocmmunities in the Athabasca River and its tributaries in relation to oil sands mining activities. Appl Environ Microbiol 78(21):7626–7637CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shiwani Guleria Sharma
    • 1
  • Mohit Sharma
    • 2
  1. 1.Department of Microbiology, School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Molecular Genetics laboratoryDayanand Medical College & HospitalLudhianaIndia

Personalised recommendations