Advertisement

Living Medicines for Health and Disease Management

  • Surender Jangra
  • Ramesh Pothuraju
Chapter
  • 34 Downloads

Abstract

Consumption of probiotics in the form of fermented products has a long history. Since the last two decades, probiotics has gained the attention of the scientific community because of their health beneficial effects. Positive effects of probiotics on metabolic disorders such as nonalcoholic fatty liver disease, immune diseases, obesity, diabetes, insulin resistance, cardiovascular disease, irritable bowel syndrome, and inflammatory bowel disease have been reported, but exact mechanism of action of probiotics in amelioration of these disorders is yet to be elucidated. Generally, genera Lactobacillus and Bifidobacterium are employed as probiotics. Different probiotics act differently in conferring health beneficial effects. Moreover, health-promoting effects of probiotics are dependent on the strain. Furthermore, probiotic dosages, feeding schedule, mechanism of action, and long-term effects on health are yet to be elucidated. Therefore, further studies are required to explain the health beneficial effects of probiotics before it can be rationally prescribed to patients. In this chapter, we will discuss about role of probiotics in the prevention and treatment of various metabolic disorders.

Keywords

Living medicine Probiotics Metabolic disorders Gut health Gut microbiota Low-grade inflammation 

References

  1. Abuissa H, Bell DSH, O’Keefe JH (2005) Strategies to prevent type 2 diabetes. Curr Med Res Opin 21(7):1107–1114PubMedGoogle Scholar
  2. Abu-Shanab A, Quigley EMM (2010) The role of the gut microbiota in non-alcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 7(12):691–701PubMedGoogle Scholar
  3. Altonsy MO, Andrews SC, Tuohy KM (2010) Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway. Int J Food Microbiol 137(2–3):190–203PubMedGoogle Scholar
  4. Anila K, Kunzes A, Bhalla T (2016) In vitro cholesterol assimilation and functional enzymatic activities of putative probiotic lactobacillus sp isolated from fermented foods/beverages of north west india. J Nutr Food Sci 6(467):1–5Google Scholar
  5. Aragon G, Graham DB, Borum M, Doman DB (2010) Probiotic therapy for irritable bowel syndrome. Gastroenterol Hepatol 6(1):39–44Google Scholar
  6. Aronsson L, Huang Y, Parini P, Korach-André M, Håkansson J, Gustafsson J-Å, Pettersson S, Arulampalam V, Rafter J (2010) Decreased fat storage by Lactobacillus Paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 5(9):e13087PubMedPubMedCentralGoogle Scholar
  7. Arora T, Anastasovska J, Gibson G, Tuohy K, Sharma RK, Bell J, Frost G (2012) Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice. Br J Nutr 108(8):1382–1389PubMedGoogle Scholar
  8. Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan T-J, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338(6103):120–123PubMedPubMedCentralGoogle Scholar
  9. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 27;157(1):121–141Google Scholar
  10. Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME (2009) Probiotics and immunity. J Gasteroenterol 44(1):26–46Google Scholar
  11. Cani PD, Delzenne NM (2009) Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Curr Opin Pharmacol 9(6):737–743PubMedGoogle Scholar
  12. Cani PD, Neyrinck AM, Fava F, Knauf C, Burcelin RG, Tuohy KM, Gibson GR, Delzenne NMJD (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50(11):2374–2383PubMedGoogle Scholar
  13. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57(6):1470–1481PubMedGoogle Scholar
  14. Coppack SW (2001) Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc 60(3):349–356PubMedGoogle Scholar
  15. Ding S, Chi M, Scull B, Rigby R, Schwerbrock N, Magness S, Jobin C, Lund P (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5(8):e12191PubMedPubMedCentralGoogle Scholar
  16. Drago L (2019) Probiotics and Colon Cancer. Microorganisms 7(3):66PubMedCentralGoogle Scholar
  17. Eslami M, Yousefi B, Kokhaei P, Hemati M, Nejad ZR, Arabkari V, Namdar A (2019) Importance of probiotics in the prevention and treatment of colorectal cancer. J Cell Physiol 234:17127.  https://doi.org/10.1002/jcp.28473CrossRefPubMedGoogle Scholar
  18. Fåk F, Bäckhed F (2012) Lactobacillus reuteri prevents diet-induced obesity, but not atherosclerosis, in a strain dependent fashion in Apoe−/− mice. PLoS One 7(10):e46837PubMedPubMedCentralGoogle Scholar
  19. FAO/WHO (2002) Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada. (2002). April, May. Guidelines for evaluation of probiotics in food. FAO/WHO, RomeGoogle Scholar
  20. Gill H, Prasad J (2008) Probiotics, immunomodulation, and health benefits. In: Bösze Z (ed) Bioactive components of milk. Springer New York, New York, pp 423–454Google Scholar
  21. Greenberg AS, Obin MS (2006) Obesity and the role of adipose tissue in inflammation and metabolism. Am J Clin Nutr 83(2):461S–465SPubMedGoogle Scholar
  22. Hamad EM, Sato M, Uzu K, Yoshida T, Higashi S, Kawakami H, Kadooka Y, Matsuyama H, El-Gawad IAA, Imaizumi K (2008) Milk fermented by Lactobacillus gasseri SBT2055 influences adipocyte size via inhibition of dietary fat absorption in Zucker rats. Br J Nutr 101(5):716–724PubMedGoogle Scholar
  23. Henao Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez J-P, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179PubMedPubMedCentralGoogle Scholar
  24. Hendler R, Zhang Y (2018) Probiotics in the treatment of colorectal cancer. Medicines 5(3):101PubMedCentralGoogle Scholar
  25. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J Clin Invest 95:2409–2415PubMedPubMedCentralGoogle Scholar
  26. Hsieh FC, Lee CL, Chai CY, Chen WT, Lu YC, Wu CS (2013) Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats. Nutr Metab 10(1):35Google Scholar
  27. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803PubMedPubMedCentralGoogle Scholar
  28. Jangra S, Sharma RK, Pothuraju R, Bhakri G (2019) Milk fermented with Lactobacillus casei NCDC19 improves high fat and sucrose diet alters gene expression in obese mice. Int Dairy J 90:15–22Google Scholar
  29. Jin CW, Jin DH, Uk JH, Ho JH, Yeung-Hyen K, Hoon KT (2019) Antiobesity effects of Lactobacillus plantarum LMT1-48 accompanied by inhibition of enterobacter cloacae in the intestine of diet-induced obese mice. J Med Food 22(6):560–566.  https://doi.org/10.1089/jmf.2018.4329CrossRefGoogle Scholar
  30. Kang JH, Yun SI, Park MH, Park JH, Jeong SY, Park HO (2013) Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 8(1):e54617PubMedPubMedCentralGoogle Scholar
  31. Kim JJ, Sears DD (2010) TLR4 and insulin resistance. Gastroenterol Res Pract 2010:212563., 11 pages.  https://doi.org/10.1155/2010/212563CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim KA, Gu W, Lee IA, Joh EH, Kim DH (2012) High fat diet-induced gut microbiota exacerbates inflammation and obesity in mice via the TLR4 signaling pathway. PLoS One 7(10):e47713PubMedPubMedCentralGoogle Scholar
  33. Kim KA, Jeong JJ, Kim DH (2015) Lactobacillus brevis OK56 ameliorates high-fat diet-induced obesity in mice by inhibiting NF-κB activation and gut microbial LPS production. J Funct Foods 13:183–191Google Scholar
  34. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, Smith JD, DiDonato JA, Chen J, Li H, Wu GD, Lewis JD, Warrier M, Brown JM, Krauss RM, Tang WHW, Bushman FD, Lusis AJ, Hazen SL (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585PubMedPubMedCentralGoogle Scholar
  35. Kumar M, Kumar A, Nagpal R, Mohania D, Behare P, Verma V, Kumar P, Poddar D, Aggarwal PK, Henry CJK, Jain S, Yadav H (2010) Cancer-preventing attributes of probiotics: an update. Int J Food Sci Nutr 61(5):473–496PubMedGoogle Scholar
  36. Kumar M, Rakesh S, Nagpal R, Hemalatha R, Ramakrishna A, Sudarshan V et al (2013) Probiotic Lactobacillus rhamnosus GG and aloe vera gel improve lipid profiles in hypercholesterolemic rats. Nutrition 29:574–579PubMedGoogle Scholar
  37. Kumar KS, Sastry N, Polaki H, Mishra V (2015) Colon cancer prevention through probiotics: an overview. J Can Sci Ther 7(2):081–092Google Scholar
  38. Lee HY, Park JH, Seok SH, Baek MW, Kim DJ, Lee KE, Paek KS, Lee Y, Park JH (2006) Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids 1761(7):736–744Google Scholar
  39. Lee K, Paek K, Lee HY, Park JH, Lee Y (2007) Antiobesity effect of trans-10,cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J Appl Microbiol 103(4):1140–1146PubMedGoogle Scholar
  40. Lee DE, Kehlenbrink S, Lee H, Hawkins M, Yudkin JS (2009) Getting the message across: mechanisms of physiological cross talk by adipose tissue. Am J Physiol Endocrinol Metab 296(6):E1210–E1229Google Scholar
  41. Levine GN, Keaney JF, Vita JA (1995) Cholesterol reduction in cardiovascular disease – clinical benefits and possible mechanisms. N Engl J Med 332(8):512–521PubMedGoogle Scholar
  42. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102(31):11070–11075PubMedGoogle Scholar
  43. Li H, Lelliott C, Håkansson P, Ploj K, Tuneld A, Verolin-Johansson M, Benthem L, Carlsson B, Storlien L, Michaëlsson E (2008) Intestinal, adipose, and liver inflammation in diet-induced obese mice. Metabolism 57(12):1704–1710PubMedGoogle Scholar
  44. Lim S-M, Jeong J-J, Woo KH, Han MJ, Kim D-H (2016) Lactobacillus sakei OK67 ameliorates high-fat diet–induced blood glucose intolerance and obesity in mice by inhibiting gut microbiota lipopolysaccharide production and inducing colon tight junction protein expression. Nutr Res 36(4):337–348PubMedGoogle Scholar
  45. Ma X, Hua J, Li Z (2008) Probiotics improve high fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol 49(5):821–830PubMedPubMedCentralGoogle Scholar
  46. Ma Y-Y, Li L, Yu C-H, Shen Z, Chen L-H, Li Y-M (2013) Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol 19(40):6911–6918PubMedPubMedCentralGoogle Scholar
  47. Marchetti P (2005) New-onset diabetes after liver transplantation: from pathogenesis to management. Liver Transpl 11(6):612–620PubMedGoogle Scholar
  48. McLoughlin RM, Mills KHG (2011) Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. J Allergy Clin Immunol 127(5):1097–1107PubMedGoogle Scholar
  49. Mennigen R, Bruewer M (2009) Effect of probiotics on intestinal barrier function. Ann NY Acad Sci 1165(1):183–189PubMedGoogle Scholar
  50. Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D (2012) Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog 53(2):100–108PubMedPubMedCentralGoogle Scholar
  51. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y (2014) Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur J Nutr 53(2):599–606PubMedGoogle Scholar
  52. Moreira APB, Texeira TFS, Ferreira AB, do Carmo Gouveia Peluzio M, de Cássia Gonçalves Alfenas R (2012) Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr 108(5):801–809PubMedGoogle Scholar
  53. Nadler ST, Attie AD (2001) Please pass the chips: genomic insights into obesity and diabetes. J Nutr 131(8):2078–2081PubMedGoogle Scholar
  54. Naito E, Yoshida Y, Makino K, Kounoshi Y, Kunihiro S, Takahashi R, Matsuzaki T, Miyazaki K, Ishikawa F (2011) Beneficial effect of oral administration of Lactobacillus casei strain Shirota on insulin resistance in diet-induced obesity mice. J Appl Microbiol 110(3):650–657PubMedGoogle Scholar
  55. Nell S, Suerbaum S, Josenhans C (2010) The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nat Rev Microbiol 8:564PubMedGoogle Scholar
  56. Nguyen TDT, Kang JH, Lee MS (2007) Characterization of Lactobacillus plantarum PH04, a potential probiotic bacterium with cholesterol-lowering effects. Int J Food Microbiol 113(3):358–361PubMedGoogle Scholar
  57. Okubo T, Takemura N, Yoshida A, Sonoyama K (2013) KK/Ta mice administered Lactobacillus plantarum strain No. 14 have lower adiposity and higher insulin sensitivity. Biosci Microbiota, Food Health 32(3):93–100Google Scholar
  58. Park Y, Kim J, Shin Y, Kim S, Whang K (2007) Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J Microbiol Biotechnol 17:655e662Google Scholar
  59. Park D-Y, Ahn Y-T, Park S-H, Huh C-S, Yoo S-R, Yu R, Sung M-K, McGregor RA, Choi M-S (2013) Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS One 8(3):e59470PubMedPubMedCentralGoogle Scholar
  60. Pothuraju R, Sharma RK, Chagalamarri J, Jangra S, Kumar Kavadi P (2014) A systematic review of Gymnema sylvestre in obesity and diabetes management. J Sci Food Agric 94(5):834–840PubMedGoogle Scholar
  61. Pothuraju R, Rachagani S, Junker WM, Chaudhary S, Saraswathi V, Kaur S, Batra SK (2018) Pancreatic cancer associated with obesity and diabetes: an alternative approach for its targeting. J Exp Clin Cancer Res 37(1):319PubMedPubMedCentralGoogle Scholar
  62. Principi N, Cozzali R, Farinelli E, Brusaferro A, Esposito S (2018) Gut dysbiosis and irritable bowel syndrome: the potential role of probiotics. J Infect 76(2):111–120PubMedGoogle Scholar
  63. Qiao Y, Sun J, Xia S, Li L, Li Y, Wang P, Shi Y, Le G (2015) Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. J Funct Foods 14:424–434Google Scholar
  64. Rather SA, Pothuraju R, Sharma RK, De S, Mir NA, Jangra S (2014) Anti-obesity effect of feeding probiotic dahi containing Lactobacillus casei NCDC 19 in high fat diet-induced obese mice. Int J Dairy Technol 67(4):504–509Google Scholar
  65. Salaj R, Stofilová J, Soltesová A, Hertelyová Z, Hijová E, Bertková I, Strojný L, Kružliak P, Bomba A (2013) The effects of two Lactobacillus plantarum strains on rat lipid metabolism receiving a high fat diet. Sci World J 2013:135142–135142Google Scholar
  66. Scanlan PD, Shanahan F, Clune Y, Collins JK, O’Sullivan GC, O’Riordan M, Holmes E, Wang Y, Marchesi JR (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10(3):789–798PubMedGoogle Scholar
  67. Sears IB, MacGinnitie MA, Kovacs LG, Graves RA (1996) Differentiation-dependent expression of the brown adipocyte uncoupling protein gene: regulation by peroxisome proliferator-activated receptor gamma. Mol Cel Biol 16(7):3410–3419Google Scholar
  68. Serra MC, Ryan AS, Goldberg AP (2017) Reduced LPL and subcutaneous lipid storage capacity are associated with metabolic syndrome in postmenopausal women with obesity. Obes Sci Pract 3(1):106–114PubMedGoogle Scholar
  69. Sharma A, Viswanath B, Park YS (2018) Role of probiotics in the management of lung cancer and related diseases: an update. J Funct Foods 40:625–633Google Scholar
  70. Shin HS, Park SY, Lee DK, Kim SA, An HM, Kim JR, Kim MJ, Cha MG, Lee SW, Kim KJ, Lee KO, Ha NJ (2010) Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Arch Pharm Res 33(9):1425–1431PubMedGoogle Scholar
  71. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Doré J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43):16731–16736PubMedGoogle Scholar
  72. Tabuchi M, Tamura A, Yamada N, Ishida T, Hosoda M, Hosono A (2004) Hypocholesterolemic effects of viable and heat-sterilized cells of Lactobacillus GG in rats fed a high-cholesterol diet. Milchwissenschaft 59(5–6):249–253Google Scholar
  73. Taylor RJD (2008) Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia 51(10):1781–1789PubMedGoogle Scholar
  74. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Aunola S, Cepaitis Z, Moltchanov V, Hakumäki M, Mannelin M, Martikkala V, Sundvall J, Uusitupa M (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344(18):1343–1350PubMedGoogle Scholar
  75. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031PubMedGoogle Scholar
  76. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2008) A core gut microbiome in obese and lean twins. Nature 457:480PubMedPubMedCentralGoogle Scholar
  77. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung Y-M, Wu Y, Schauer P, Smith JD, Allayee H, Tang WHW, DiDonato JA, Lusis AJ, Hazen SL (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57PubMedPubMedCentralGoogle Scholar
  78. Xie N, Cui Y, Yin Y-N, Zhao X, Yang J-W, Wang Z-G, Fu N, Tang Y, Wang X-H, Liu X-W, Wang C-L, Lu F-G (2011) Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement Altern Med 11:53–53PubMedPubMedCentralGoogle Scholar
  79. Yadav R, Vij R, Kapila S, Khan SH, Kumar N, Meena S, Kapila R (2019) Milk fermented with probiotic strains Lactobacillus rhamnosus MTCC5957 and Lactobacillus rhamnosus MTCC5897 ameliorates the diet-induced hypercholesterolemia in rats. Ann Microbiol 69(5):483–494Google Scholar
  80. Yin Y-N, Yu Q-F, Fu N, Liu X-W, Lu F-G (2010) Effects of four bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 16(27):3394–3401PubMedPubMedCentralGoogle Scholar
  81. Zanella MT, Ribeiro Filho FF (2009) Emerging drugs for obesity therapy. Arq Bras Endocrinol Metabol 53:271–280PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Surender Jangra
    • 1
  • Ramesh Pothuraju
    • 2
  1. 1.School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medicine CenterOmahaUSA

Personalised recommendations