Advertisement

Microbes in Pharmaceutical Industry

  • Divya Kapoor
  • Pankaj Sharma
  • Mayur Mukut Murlidhar Sharma
  • Anju Kumari
  • Rakesh KumarEmail author
Chapter
  • 36 Downloads

Abstract

Microbes are ubiquitous in nature, and the tremendous potential of microbes is an unquestionable and unhidden phenomenon. The pharmaceutical aspects of microbial diversity can be judiciously explored for patronizing and safeguarding human health standards. Several studies have unveiled the remarkable wonders which target to prolong and ease the human health by treating pathogenic diseases and by curing different metabolic disorders, thereby sustaining human regime. Generally, the aim of pharmaceutical microbiology is to offer acquaintance and consider the importance of the occurrence of bacteria, yeasts, moulds, viruses and toxins in diverse pharmacological raw materials, products, intermediates and the environs advocating therapeutic construction as well as the microbial regulator of medicinal harvests, manufacturing surroundings and people. Meanwhile, the outline of this functional theme area of microbiology, above the ages, pharmacological microbiology, has advanced and stretched expressively to comprehend numerous other sides, e.g. examination and expansion of novel anti-infective representatives, the use of microbes to perceive mutagenic and oncogenic prospective in medications and the usage of microbes in the production of insulin and various other human growth hormone. An array of bioactive composites sequestered using different approaches have not only exposed prominence in diverse pharmaceutical and biotechnological solicitations but have also augmented the indulgence of mankind in exploring variety of microbiota and targeting their diverse functions and the credulous biology behind their production. The defensible and pecuniary stream of the dynamic pharmaceutical elements is often calmer to accomplish for composites fashioned through microbial fermentation attitudes versus the gardening of slower developing macroorganisms. This article stresses on microbial fabricators and their potential to engender innovative biologically active compounds and their starring role in the simplification of human life.

Keywords

Therapeutic Antibiotics Bacteriocins Biosurfactants Nutraceuticals 

References

  1. Adkins I, Holubova J, Kosova M, Sadilkova L (2012) Bacteria and their toxins tamed for immunotherapy. Curr Pharm Biotechnol 13(8):1446–1473.  https://doi.org/10.2174/138920112800784835CrossRefPubMedGoogle Scholar
  2. Ahmad V, Khan MS, Jamal QMS, Alzohairy MA, Al Karaawi MA, Siddiqui MU (2017) Antimicrobial potential of bacteriocins: in therapy, agriculture and food preservation. Int J Antimicrob Agents 49(1):1–11.  https://doi.org/10.1016/j.ijantimicag.2016.08.016CrossRefPubMedGoogle Scholar
  3. Ahmad V, Ahmad K, Baig MH, AL-Shwaiman HA, Al Khulaifi MM, Elgorban AM, Khan MS (2019) Efficacy of a novel bacteriocin isolated from Lysinibacillus sp. against Bacillus pumilus. LWT 102:260–267Google Scholar
  4. Ahmadi S, Ghollasi M, Hosseini HM (2017) The apoptotic impact of nisin as a potent bacteriocin on the colon cancer cells. Microb Pathog 111:193–197.  https://doi.org/10.1016/j.micpath.2017.08.037CrossRefPubMedGoogle Scholar
  5. Akbari S, Abdurahman NH, Yunus RM, Fayaz F, Alara OR (2018) Biosurfactants—a new frontier for social and environmental safety: a mini review. Biotechnol Res Innov 2:81–90Google Scholar
  6. Albarracin L, Kobayashi H, Iida H, Sato N, Nochi T, Aso H, Salva S, Alvarez S, Kitazawa H, Villena J (2017) Transcriptomic analysis of the innate antiviral immune response in porcine intestinal epithelial cells: influence of immunobiotic lactobacilli. Front Immunol 8:57PubMedPubMedCentralGoogle Scholar
  7. Alejandro CS, Humberto HS, María JF (2011) Production of glycolipids with antimicrobial activity by Ustilago maydis FBD12 in submerged culture. Afr J Microbiol Res 5:2512–2523Google Scholar
  8. Alfano M, Rizzi C, Corti D, Adduce L, Poli G (2005) Bacterial toxins: potential weapons against HIV infection. Curr Pharm Des 11(22):2909–2926PubMedGoogle Scholar
  9. Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AH, Mohammed OY, Elhassan GO, Harguindey S, Reshkin SJ (2015) Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int 15(1):71PubMedPubMedCentralGoogle Scholar
  10. Allen AP, Hutch W, Borre YE, Kennedy PJ, Temko A, Boylan G, Murphy E, Cryan JF, Dinan TG, Clarke G (2016) Bifidobacterium longum 1714 as a translational psychobiotic: modulation of stress, electrophysiology and neurocognition in healthy volunteers. Transl Psychiatry 11:e939Google Scholar
  11. Alonso C, Lucas R, Barba C, Marti M, Rubio L, Comelles F, Morales JC, Coderch L, Parra JL (2015) Skin delivery of antioxidant surfactants based on gallic acid and hydroxytyrosol. J Pharm Pharmacol 67(7):900–908PubMedGoogle Scholar
  12. Anbu P, Gopinath SC, Cihan AC, Chaulagain BP (2013) Microbial enzymes and their applications in industries and medicine. Biomed Res Int 2013:1–2Google Scholar
  13. Archana K, Reddy KS, Parameshwar J, Bee H (2019) Isolation and characterization of sophorolipid producing yeast from fruit waste for application as antibacterial agent. Environ Sustain 2:1–9Google Scholar
  14. Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action. FEMS Microbiol Lett 195(1):1–8PubMedGoogle Scholar
  15. Azevedo MS, Zhang W, Wen K, Gonzalez AM, Saif LJ, Yousef AE (2012) Lactobacillus acidophilus and lactobacillus reuteri modulate cytokine responses in gnotobiotic pigs infected with human rotavirus. Benefic Microbes 3(1):33–42.  https://doi.org/10.3920/BM2011.0041CrossRefGoogle Scholar
  16. Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M (2011) Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav Immun 25(3):397–407PubMedGoogle Scholar
  17. Balan SS, Kumar CG, Jayalakshmi S (2019) Physicochemical, structural and biological evaluation of Cybersan (trigalactomargarate), a new glycolipid biosurfactant produced by a marine yeast, Cyberlindnera saturnus strain SBPN-27. Process Biochem 80:171–180Google Scholar
  18. Banat I, Franzetti A, Gandolfi I, Bestetti G, Martinotti M, Fracchia L, Smyth T, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444PubMedGoogle Scholar
  19. Bardach A, Ciapponi A, Garcia-Marti S, Glujovsky D, Mazzoni A, Fayad A (2011) Epidemiology of acute otitis media in children of Latin America and the Caribbean: a systematic review and meta-analysis. Int J Pediatr Otorhinolaryngol 75:1062–1070.  https://doi.org/10.1016/j.ijporl.2011.05.014CrossRefPubMedGoogle Scholar
  20. Basu S, Paul DK, Ganguly S, Chatterjee M, Chandra PK (2009) Efficacy of high dose lactobacillus rhamnosus GG in controlling acute watery diarrhea in Indian children: a randomized controlled trial. J Clin Gastroenterol 43(3):208–213.  https://doi.org/10.1097/MCG.0b013e31815a5780CrossRefPubMedGoogle Scholar
  21. Belenky P, Jonathan DY, Porter CB, Cohen NR, Lobritz MA, Ferrante T, Jain S, Korry BJ, Schwarz EG, Walker GC, Collins JJ (2015) Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell Rep 13(5):968–980PubMedPubMedCentralGoogle Scholar
  22. Belkacem N, Bourdet-Sicard R, Taha MK (2018) Lactobacillus paracasei feeding improves the control of secondary experimental meningococcal infection in flu-infected mice. BMC Infect Dis 18(1):167PubMedPubMedCentralGoogle Scholar
  23. Bentley SD, Chater KF, Cerdeño-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147PubMedGoogle Scholar
  24. Bodart JF, Chopra A, Liang X, Duesbery N (2002) Anthrax, MEK and cancer. Cell Cycle 1(1):7–12Google Scholar
  25. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108(38):16050–16055PubMedGoogle Scholar
  26. Brown ED, Wright GD (2016) Antibacterial drug discovery in the resistance era. Nature 529:336–343PubMedGoogle Scholar
  27. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9(12):894PubMedPubMedCentralGoogle Scholar
  28. Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529PubMedGoogle Scholar
  29. Carrero JA, Calderon B, Unanue ER (2004) Listeriolysin 0 from listeria monocytogenes is a lymphocyte apoptogenic molecule. J Immunol 172(8):4866–4874PubMedGoogle Scholar
  30. Cavicchioli VQ, de Carvalho OV, de Paiva JC, Todorov SD, Júnior AS, Nero LA (2018) Inhibition of herpes simplex virus 1 (HSV-1) and poliovirus (PV-1) by bacteriocins from Lactococcus lactis subsp. lactis and Enterococcus durans strains isolated from goat milk. Int J Antimicrob Agents 51(1):33–37PubMedGoogle Scholar
  31. Chandran P, Das N (2010) Biosurfactant production and diesel oil degradation by yeast species Trichosporon asahii isolated from petroleum hydrocarbon contaminated soil. Int J Eng Sci Technol 2:6942–6953Google Scholar
  32. Chiewpattanakul P, Phonnok S, Durand A, Marie E, Thanomsub BW (2010) Bioproduction and anticancer activity of biosurfactant produced by the dematiaceous fungus Exophiala dermatitidis SK80. J Microbiol Biotechnol 20:1664–1671.  https://doi.org/10.4014/jmb.1007.07052CrossRefPubMedGoogle Scholar
  33. Chikindas ML, Weeks R, Drider D, Chistyakov VA, Dicks LMT (2018) Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 49:23–28PubMedGoogle Scholar
  34. Chirumamilla RR, Muralidhar R, Marchant R, Nigam P (2001) Improving the quality of industrially important enzymes by directed evolution. Mol Cell Biochem 224(1/2):159–168PubMedGoogle Scholar
  35. Cho YH, Song JY, Kim KM, Kim MK, Lee IY, Kim SB, Kim HS, Han NS, Lee BH, Kim BS (2010) Production of nattokinase by batch and fed-batch culture of Bacillus subtilis. New Biotechnol 27(4):341–346Google Scholar
  36. Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspect. Biotechnol Adv 33:1443–1454.  https://doi.org/10.1016/j.biotechadv.2015.02.014CrossRefPubMedGoogle Scholar
  37. Clancy R (2003) Immunobiotics and the probiotic evolution. FEMS Immunol Med Microbiol 38(1):9–12.  https://doi.org/10.1016/s0928-8244(03)00147-0CrossRefPubMedGoogle Scholar
  38. Clardy J, Fischbach MA, Currie CR (2009) The natural history of antibiotics. Curr Biol 19(11):R437–R441PubMedPubMedCentralGoogle Scholar
  39. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666PubMedGoogle Scholar
  40. Collin F, Maxwell A (2019) The microbial toxin microcin B17: prospects for the development of new antibacterial agents. J Mol Biol 431:3400–3426PubMedPubMedCentralGoogle Scholar
  41. Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014PubMedGoogle Scholar
  42. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10:735–742PubMedPubMedCentralGoogle Scholar
  43. Cordivari C, Misra VP, Catania S, Lees AJ (2001) Treatment of dystonic clenched fist with botulinum toxin. Mov Disord 16(5):907–913PubMedGoogle Scholar
  44. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788PubMedGoogle Scholar
  45. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712PubMedPubMedCentralGoogle Scholar
  46. Cryan JF, O’Mahony SM (2011) The microbiome-gut-brain axis: from bowel to behaviour. Neurogastroenterol Motil 23:187–192PubMedGoogle Scholar
  47. Cuevas C, Francesch A (2009) Development of Yondelis (trabectedin, ET-743): a semisynthetic process solves the supply problem. Nat Prod Rep 26:322–337Google Scholar
  48. Cutting GR (2005) Modifier genetics: cystic fibrosis. Annu Rev Genomics Hum Genet 6:237–260PubMedGoogle Scholar
  49. Das P, Mukherjee S, Sen R (2009) Antiadhesive action of a marine microbial surfactant. Colloids Surf B: Biointerfaces 71(2):183–186PubMedGoogle Scholar
  50. de Freitas FJ, Vieira EA, Nitschke M (2019) The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res Int 116:737–744Google Scholar
  51. de Haan L, Hirst TR (2009) Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (review). Mol Membr Biol 21(2):77–92Google Scholar
  52. De Kwaadsteniet M, Doeschate KT, Dicks LMT (2009) Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett Appl Microbiol 48:65–70PubMedGoogle Scholar
  53. DeFelice SL (1995) The nutraceutical revolution: its impact on food industry R&D. Trends Food Sci Technol 6(2):59–61Google Scholar
  54. Del Carmen S, de LeBlanc AD, Martin R, Chain F, Langella P, Bermúdez-Humarán LG, LeBlanc JG (2014) Genetically engineered immunomodulatory Streptococcus thermophilus strains producing antioxidant enzymes exhibit enhanced anti-inflammatory activities. Appl Environ Microbiol 80(3):869–877PubMedPubMedCentralGoogle Scholar
  55. Demain AL (2002) Prescription for an ailing pharmaceutical industry. Nat Biotechnol 20(4):331–331.  https://doi.org/10.1038/nbt0402-331CrossRefPubMedGoogle Scholar
  56. Demain AL (2004) The biopharmaceutical revolution. Chem Today (Chim Oggi) 22:11–12Google Scholar
  57. Demain AL, Adrio JL (2008) Contributions of microorganisms to industrial biology. Mol Biotechnol 38(1):41–55PubMedGoogle Scholar
  58. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62(1):5PubMedPubMedCentralGoogle Scholar
  59. Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306PubMedGoogle Scholar
  60. Dey G, Bharti R, Sen R, Mandal M (2015) Microbial amphiphiles: a class of promising new-generation anticancer agents. Drug Discov Today 20:136–146.  https://doi.org/10.1016/j.drudis.2014.09.006CrossRefPubMedGoogle Scholar
  61. Dinan TG, Stanton C, Cryan JF (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74(10):720–726PubMedGoogle Scholar
  62. Dolman BM, Wang F, Winterburn JB (2019) Integrated production and separation of biosurfactants. Process Biochem 83:1–8.  https://doi.org/10.1016/j.procbio.2019.05.002CrossRefGoogle Scholar
  63. Donaldson DS, Williams NA (2009) Bacterial toxins as immunomodulators. In: Pathogen-derived immunomodulatory molecules. Springer, New York, pp 1–18Google Scholar
  64. Donio MB, Ronica SF, Viji VT, Velmurugan S, Jenifer JA, Michaelbabu M, Citarasu T (2013) Isolation and characterization of halophilic Bacillus sp. BS3 able to produce pharmacologically important biosurfactants. Asian Pac J Trop Med 6(11):876–883PubMedGoogle Scholar
  65. Dordick JS (2013) Biocatalysts for industry. ISBN 9781475745979Google Scholar
  66. Doron S, Snydman DR, Gorbach SL (2005) Lactobacillus GG: bacteriology and clinical applications. Gastroenterol Clin N Am 34:483–498.  https://doi.org/10.1016/j.gtc.2005.05.011CrossRefGoogle Scholar
  67. Dy GK, Adjei AA (2013) Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J Clin 63(4):249–279PubMedGoogle Scholar
  68. Edmond K, Scott S, Korczak V, Ward C, Sanderson C, Theodoratou E (2012) Long term sequelae from childhood pneumonia; systematic review and meta-analysis. PLoS One 7:e31239.  https://doi.org/10.1371/journal.pone.0031239CrossRefPubMedPubMedCentralGoogle Scholar
  69. Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, Xin L, Chaturvedi V, Strong BS, Qualls JE, Steinbrecher KA, Kalfa TA (2013) Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature 504(7478):158PubMedPubMedCentralGoogle Scholar
  70. Erbguth FJ, Naumann M (1999) Historical aspects of botulinum toxin: Justinus Kerner (1786–1862) and the “sausage poison”. Neurology 53(8):1850–1853PubMedGoogle Scholar
  71. Escott-Stump E, Mahan LK (2000) Krause’s food, nutrition and diet therapy, 10th edn. WB Saunders Company, Philadelphia, pp 553–559Google Scholar
  72. Fabbri A, Travaglione S, Falzano L, Fiorentini C (2008) Bacterial protein toxins: current and potential clinical use. Curr Med Chem 15(11):1116–1125.  https://doi.org/10.2174/092986708784221430CrossRefPubMedGoogle Scholar
  73. Faber K (1997) Biotransformations in organic chemistry: a textbook. Springer, BerlinGoogle Scholar
  74. Farias JM, Stamford TC, Resende AH, Aguiar JS, Rufino RD, Luna JM, Sarubbo LA (2019) Mouthwash containing a biosurfactant and chitosan: an eco-sustainable option for the control of cariogenic microorganisms. Int J Biol Macromol 129:853–860PubMedGoogle Scholar
  75. Farizano JV, Masías E, Hsu FF, Salomón RA, Freitag NE, Hebert EM, Minahk C, Saavedra L (2019) PrfA activation in listeria monocytogenes increases the sensitivity to class IIa bacteriocins despite impaired expression of the bacteriocin receptor. Biochim Biophys Acta (BBA) Gen Subj 1863(8):1283–1291Google Scholar
  76. Felse PA, Shah V, Chan J, Rao KJ, Gross RA (2007) Sophorolipid biosynthesis by the yeast Candida bombicola from industrial fatty acid residues. Enzym Microb Technol 40(2):499–504Google Scholar
  77. Ferreira A, Vecino X, Ferreira D, Cruz JM, Moldes AB, Rodrigues LR (2017) Novel cosmetic formulations containing a biosurfactant from lactobacillus paracasei. Colloids Surf B: Biointerfaces 155(4):522–529.  https://doi.org/10.1016/j.colsurfb.2017.04.026CrossRefPubMedGoogle Scholar
  78. Ferrer-Miralles N, Domingo-Espín J, Corchero J, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Factories 8(1):17.  https://doi.org/10.1186/1475-2859-8-17CrossRefGoogle Scholar
  79. Galvez A, Abriouel H, Ben Omar N, Lucas R (2011) Food applications and regulations. In: Drider D, Rebuffat S (eds) Prokaryotic antimicrobial peptides. Springer, New York, pp 353–390Google Scholar
  80. Gaur VK, Regar RK, Dhiman N, Gautam K, Srivastava JK, Patnaik S, Kamthan M, Manickam N (2019) Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: application as food emulsifier and antibacterial agent. Bioresour Technol 285:121314PubMedGoogle Scholar
  81. Gentile A, Bardach A, Ciapponi A, Garcia-Marti S, Aruj P, Glujovsky D (2012) Epidemiology of community-acquired pneumonia in children of Latin America and the Caribbean: a systematic review and meta-analysis. Int J Infect Dis 16:e5–e15.  https://doi.org/10.1016/j.ijid.2011.09.013CrossRefPubMedGoogle Scholar
  82. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22:1409–1414PubMedGoogle Scholar
  83. Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 34(12):667–675PubMedGoogle Scholar
  84. Guerin M, Huntley ML, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216PubMedGoogle Scholar
  85. Haan L, Hirst TR (2000) Cholera toxin and related enterotoxins: a cell biological and immunological perspective. J Nat Toxins 9(3):281–297PubMedGoogle Scholar
  86. Hackett R, Kam PC (2007) Botulinum toxin: pharmacology and clinical developments: a literature review. Med Chem 3(4):333–345PubMedGoogle Scholar
  87. Hasper HE, Kramer NE, Smith JL, Hillman JD, Zachariah C, Kuipers OP, de Kruijff B, Breukink E (2006) An alternative bactericidal mechanism of action for lantibiotic peptides that target lipid II. Science 313:1636–1637PubMedGoogle Scholar
  88. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108(7):3047–3052Google Scholar
  89. Hentati D, Chebbi A, Hadrich F, Frikha I, Rabanal F, Sayadi S, Manresa A, Chamkha M (2019) Production, characterization and biotechnological potential of lipopeptide biosurfactants from a novel marine Bacillus stratosphericus strain FLU5. Ecotoxicol Environ Saf 167:441–449PubMedGoogle Scholar
  90. Herrero M, Moreno F (1986) Microcin B17 blocks DNA replication and induces the SOS system in Escherichia coli. Microbiology 132(2):393–402Google Scholar
  91. Hessle C, Andersson B, Wold AE (2000) Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infect Immun 68:3581PubMedPubMedCentralGoogle Scholar
  92. Hong K-W, Koh C-L, Sam C-K, Yin W-F, Chan K-G (2012) Quorum quenching revisited—from signal decays to signalling confusion. Sensors (Basel) 12:4661–4696Google Scholar
  93. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292(5519):1115–1118PubMedGoogle Scholar
  94. Hord NG (2008) Eukaryotic microbiotic crosstalk: potential mechanisms for health benefits of prebiotics and probiotics. Annu Rev Nutr 28:215–231.  https://doi.org/10.1146/annurev.nutr.28.061807.155402CrossRefPubMedGoogle Scholar
  95. Hua Z, Chen J, Lun S, Wang X (2003) Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Res 3:4143–4150Google Scholar
  96. Ikram-ul-Haq, Ali S, Qadeer MA (2002) Biosynthesis of L-DOPA by Aspergillus oryzae. Bioresour Technol 85(1):25–29PubMedGoogle Scholar
  97. Indira M, Venkateswarulu TC, Vidya Prabhakar K, Abraham Peele K, Krupanidhi S (2018) Isolation and characterization of bacteriocin producing Enterococcus casseliflavus and its antagonistic effect on Pseudomonas aeruginosa. Karbala Int J Mod Sci 4:361–368.  https://doi.org/10.1016/j.kijoms.2018.09.002CrossRefGoogle Scholar
  98. Iyer LM, Aravind L, Coon SL, Klein DC, Koonin EV (2004) Evolution of cell–cell signaling in animals: did late horizontal gene transfer from bacteria have a role? Trends Genet 20(7):292–299PubMedGoogle Scholar
  99. Jain N, Ramawat KG (2013) Nutraceuticals and antioxidants in prevention of diseases. In: Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Heidelberg, pp 2559–2580Google Scholar
  100. Janik R, Thomason LA, Stanisz AM, Forsythe P, Bienenstock J, Stanisz GJ (2016) Magnetic resonance spectroscopy reveals oral lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. NeuroImage 125:988–995PubMedGoogle Scholar
  101. Jeandet P, Vasserot Y, Chastang T, Courot E (2013) Engineering microbial cells for the biosynthesis of natural compounds of pharmaceutical significance. Biomed Res Int 2013:780145PubMedPubMedCentralGoogle Scholar
  102. Jenkins N (2007) Modifications of therapeutic proteins: challenges and prospects. Cytotechnology 53:121–125PubMedPubMedCentralGoogle Scholar
  103. Johannes T, Simurdiak MR, Zhao H (2006) Biocatalysis. In: Lee S (ed) Encyclopedia of chemical processing. Taylor & Francis, New York, pp 101–110Google Scholar
  104. Joshi PA, Shekhawat DB (2014) Screening and isolation of biosurfactant producing bacteria from petroleum contaminated soil. Eur J Exp Biol 4(4):164–169Google Scholar
  105. Jozala AF, Geraldes DC, Tundisi LL, Feitosa VD, Breyer CA, Cardoso SL, Mazzola PG, Oliveira-Nascimento LD, Rangel-Yagui CD, Magalhães PD, Oliveira MA (2016) Biopharmaceuticals from microorganisms: from production to purification. Braz J Microbiol 47:51–63PubMedPubMedCentralGoogle Scholar
  106. Juárez I, Gratton A, Flores G (2008) Ontogeny of altered dendritic morphology in the rat prefrontal cortex, hippocampus, and nucleus accumbens following cesarean delivery and birth anoxia. J Comp Neurol 507:1734–1747PubMedGoogle Scholar
  107. Juturu V, Wu JC (2018) Microbial production of bacteriocins: latest research development and applications. Biotechnol Adv 36:2187–2200.  https://doi.org/10.1016/j.biotechadv.2018.10.007CrossRefPubMedGoogle Scholar
  108. Kaewnopparat S, Dangmanee N, Kaewnopparat N, Srichana T, Chulasiri M, Settharaksa S (2013) In vitro probiotic properties of lactobacillus fermentum SK5 isolated from vagina of a healthy woman. Anaerobe 22:6–13PubMedGoogle Scholar
  109. Kaktcham PM, Kouam EM, Tientcheu ML, Temgoua JB, Wacher C, Ngoufack FZ, de Lourdes P-CM (2019) Nisin-producing Lactococcus lactis subsp. lactis 2MT isolated from freshwater Nile tilapia in Cameroon: bacteriocin screening, characterization, and optimization in a low-cost medium. LWT 107:272–279Google Scholar
  110. Karlapudi AP, Venkateswarulu TC, Srirama K, Kota RK, Mikkili I, Kodali VP (2018) Evaluation of anti-cancer, anti-microbial and anti-biofilm potential of biosurfactant extracted from an Acinetobacter M6 strain. J King Saud Univ-Sci 32(1):223–227Google Scholar
  111. Kataria J, Li N, Wynn JL, Neu J (2009) Probiotic microbes: do they need to be alive to be beneficial? Nutr Rev 67(9):546–550PubMedGoogle Scholar
  112. Kaur B, Balgir PP, Mittu B, Kumar B, Garg N (2013) Biomedical applications of fermenticin HV6b isolated from lactobacillus fermentum HV6b MTCC10770. Biomed Res Int 2013:1–8Google Scholar
  113. Kaur K, Sangwan S, Kaur H (2017) Biosurfactant production by yeasts isolated from hydrocarbon polluted environments. Environ Monit Assess 189(12):603PubMedGoogle Scholar
  114. Khopade A, Biao R, Liu X, Mahadik K, Zhang L, Kokare C (2011) Production and stability studies of the biosurfactant isolated from marine Nocardiopsis spp. B4. Desalination 285:198–204Google Scholar
  115. Kim K, Jung SY, Lee DK, Jung JK, Park JK, Kim DK, Lee CH (1998) Suppression of inflammatory responses by surfactin, a selective inhibitor of platelet cytosolic phospholipase A2. Biochem Pharmacol 55(7):975–985.  https://doi.org/10.1016/s0006-2952(97)00613-8CrossRefPubMedGoogle Scholar
  116. Kim HR, Jung KY, Kim SY, Ko, Lee YM, Kim JM (2003) Delivery modes and neonatal EEG: spatial pattern analysis. Early Hum Dev 75(1–2):35–53PubMedGoogle Scholar
  117. Kim N-N, Kim WJ, Kang S-S (2019) Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control 98:274–280Google Scholar
  118. Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomas TA, Ravji TR, Natarajaseenivasan K (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B: Biointerfaces 73(2):250–256PubMedGoogle Scholar
  119. Kitagawa M, Suzuki M, Yamamoto S, Sogabe A, Kitamoto D, Imura T, Morita T (2011). U.S. patent application no. 13/170,432Google Scholar
  120. Kohanski MA, Dwye DJ, Collins JJ (2010) How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol 8:423–435PubMedPubMedCentralGoogle Scholar
  121. Konishi M, Fukuoka T, Morita T, Imura T, Kitamoto D (2008) Production of new types of sophorolipids by Candida batistae. J Oleo Sci 57:359–369PubMedGoogle Scholar
  122. Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17(7):561–594PubMedGoogle Scholar
  123. Lahtinen SJ, Endo A (2011) Health effects of nonviable probiotics. In: Lahtinen S, Ouwehand AC, Salminen S, von Wright A (eds) Lactic acid bacteria: microbiological and functional aspects, 4th edn. CRC Press, Boca Raton, pp 670–685Google Scholar
  124. Lancini G, Demain AL (2013) Bacterial pharmaceutical products. In: The prokaryotes: applied bacteriology and biotechnology. Springer, Heidelberg, pp 257–280.  https://doi.org/10.1007/978-3-642-31331-8_28CrossRefGoogle Scholar
  125. Le Roes-Hill M, Prins A (2016) Biotechnological potential of oxidative enzymes from Actinobacteria. In: Actinobacteria – basics and biotechnological applications.  https://doi.org/10.5772/61321Google Scholar
  126. Lenoir-Wijnkoop I, Sanders ME, Cabana MD, Caglar E, Corthier G, Rayes N, Sherman PM, Timmerman HM (2007) Probiotic and prebiotic influence beyond the intestinal tract. Nutr Rev 65:469–489.  https://doi.org/10.1111/j.1753-4887.2007.tb00272.xCrossRefPubMedGoogle Scholar
  127. Leonard E, Koffas MA (2007) Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl Environ Microbiol 73(22):7246–7251PubMedPubMedCentralGoogle Scholar
  128. Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2(3):e201209017PubMedPubMedCentralGoogle Scholar
  129. Liang S, Wang T, Hu X, Luo J, Li W, Wu X, Duan Y, Jin F (2015) Administration of lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577PubMedGoogle Scholar
  130. Liu X, Kokare C (2017) Microbial enzymes of use in industry. In: Biotechnology of microbial enzymes. Elsevier, London/New York, pp 267–298.  https://doi.org/10.1016/b978-0-12-803725-6.00011-xCrossRefGoogle Scholar
  131. Liu F, Li G, Wen K, Bui T, Cao D, Zhang Y (2010) Porcine small intestinal epithelial cell line (IPEC-J2) of rotavirus infection as a new model for the study of innate immune responses to rotaviruses and probiotics. Viral Immunol 23(2):135–149.  https://doi.org/10.1089/vim.2009.0088CrossRefPubMedPubMedCentralGoogle Scholar
  132. Liu X, Ren B, Gao H, Liu M, Dai H, Song F, Zhang L (2012) Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS One 7(5):e34430PubMedPubMedCentralGoogle Scholar
  133. Liu WH, Yang CH, Lin CT, Li SW, Cheng WS, Jiang YP, Wu CC, Chang CH, Tsai YC (2015) Genome architecture of lactobacillus plantarum PS128, a probiotic strain with potential immunomodulatory activity. Gut Pathogens 7(1):22PubMedPubMedCentralGoogle Scholar
  134. Liu YW, Liu WH, Wu CC, Juan YC, Wu YC, Tsai HP, Wang S, Tsai YC (2016) Psychotropic effects of lactobacillus plantarum PS128 in early life-stressed and naïve adult mice. Brain Res 1631:1–2PubMedGoogle Scholar
  135. Liu YW, Ong JS, Gan CY, Khoo BY, Yahaya S, Choi SB, Low WY, Tsai YC, Liong MT (2019) Lactobacillus fermentum PS150 showed psychotropic properties by altering serotonergic pathway during stress. J Funct Foods 59:352–361Google Scholar
  136. Lyte M (2011) Probiotics function mechanistically as delivery vehicles of neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays 33(8):574–581PubMedGoogle Scholar
  137. Macfarlane GT, Macfarlane S (2012) Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 95(1):50–60PubMedGoogle Scholar
  138. Majamaa H, Isolauri E, Saxelin M, Vesikari T (1995) Lactic acid bacteria in the treatment of acute rotavirus gastroenteritis. J Pediatr Gastroenterol Nutr 20(3):333–338.  https://doi.org/10.1097/00005176-199504000-00012CrossRefPubMedGoogle Scholar
  139. Manning MC, Patel K, Borchardt RT (1989) Stability of protein pharmaceuticals. Pharm Res 6:903–918PubMedGoogle Scholar
  140. Maragkoudakis PA, Chingwaru W, Gradisnik L, Tsakalidou E, Cencic A (2010) Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection. Int J Food Microbiol 141(Suppl 1):S91–S97.  https://doi.org/10.1016/j.ijfoodmicro.2009.12.024CrossRefPubMedPubMedCentralGoogle Scholar
  141. Martín-Escolano R, Cebrián R, Martín-Escolano J, Rosales MJ, Maqueda M, Sánchez-Moreno M, Marín C (2019) Insights into Chagas treatment based on the potential of bacteriocin AS-48. Int J Parasitol Drugs Drug Resist 10:1–8PubMedPubMedCentralGoogle Scholar
  142. Masmoudi H, Le Y, Piccerelle P, Kister J (2005) The evaluation of cosmetic and pharmaceutical emulsions aging process using classical techniques and a new method: FTIR. Int J Pharm 289:117–131.  https://doi.org/10.1016/j.ijpharm.2004.10.020CrossRefPubMedGoogle Scholar
  143. Matthews DM, Jenks SM (2013) Ingestion of Mycobacterium vaccae decreases anxiety-related behavior and improves learning in mice. Behav Process 96:27–35.  https://doi.org/10.1016/j.beproc.2013.02.007CrossRefGoogle Scholar
  144. Mattick ATR, Hirsch A (1947) Further observations on an inhibitory substance (nisin) from lactic streptococci. Lancet 2:5–7PubMedGoogle Scholar
  145. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM (2011) Assessment of psychotropic-like properties of a probiotic formulation (lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764PubMedGoogle Scholar
  146. Metchnikoff E (1907) The prolongation of life. Putnam & Sons, New YorkGoogle Scholar
  147. Miyazawa K, He F, Kawase M, Kubota A, Yoda K, Hiramatsu M (2011) Enhancement of immunoregulatory effects of lactobacillus gasseri TMC0356 by heat treatment and culture medium. Lett Appl Microbiol 53(2):210–216PubMedGoogle Scholar
  148. Morgan SM, O’Connor PM, Cotter PD, Ross RP, Hill C (2005) Sequential actions of the two component peptides of the lantibiotic lacticin 3147 explain its antimicrobial activity at nanomolar concentrations. Antimicrob Agents Chemother 49:2606–2611PubMedPubMedCentralGoogle Scholar
  149. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198PubMedGoogle Scholar
  150. Murphy EF, Clarke CF, Marques TM, Hill C, Stanton C, Ross RP, O’Doherty RM, Shanahan F, Cotter PD (2013) Antimicrobials: strategies for targeting obesity and metabolic health? Gut Microbes 4:48–53PubMedPubMedCentralGoogle Scholar
  151. Nalini S, Parthasarathi R (2018) Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Ann Agrarian Sci 16(2):108–115Google Scholar
  152. Neufeld K, Kang N, Bienenstock J, Foster J (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–264PubMedGoogle Scholar
  153. Neuman H, Debelius JW, Knight R, Koren O (2015) Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 39(4):509–521PubMedGoogle Scholar
  154. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477PubMedGoogle Scholar
  155. Nigam P (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol Ther 3(4):597–611Google Scholar
  156. Nishida K, Sawada D, Kuwano Y, Tanaka H, Sugawara T, Aoki Y, Fujiwara S, Rokutan K (2017) Daily administration of paraprobiotic lactobacillus gasseri CP2305 ameliorates chronic stress-associated symptoms in Japanese medical students. J Funct Foods 36:112–121Google Scholar
  157. O’Connell S, Walsh G (2008) Application relevant studies of fungal beta-galactosidases with potential application in the alleviation of lactose intolerance. Appl Biochem Biotechnol 149(2):129–138PubMedGoogle Scholar
  158. Obtel M, Lyoussi B, Tachfouti N, Pelissier SM, Nejjari C (2015) Using surveillance data to understand cancer trends: an overview in Morocco. Arch Public Health 73(1):45PubMedPubMedCentralGoogle Scholar
  159. Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539PubMedPubMedCentralGoogle Scholar
  160. Oh S, Kim SH, Ko Y, Sim JH, Kim KS, Lee SH, Park S, Kim YJ (2006) Effect of bacteriocin produced by Lactococcus sp. HY 449 on skin-inflammatory bacteria. Food Chem Toxicol 44(4):552–559PubMedGoogle Scholar
  161. Ohadi M, Dehghannoudeh G, Forootanfar H, Shakibaie M, Rajaee M (2018) Investigation of the structural, physicochemical properties, and aggregation behavior of lipopeptide biosurfactant produced by Acinetobacter junii B6. Int J Biol Macromol 112:712–719.  https://doi.org/10.1016/j.ijbiomac.2018.01.209CrossRefPubMedGoogle Scholar
  162. Okafor N, Okeke B (2007) Biocatalysis: immobilized enzymes and immobilized cells. In: Modern industrial microbiology and biotechnology. Science Publishers, Enfield, pp 398–420Google Scholar
  163. Oliveira C, Guimarães PMR, Domingues L (2011) Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnol Adv 29(6):600–609PubMedGoogle Scholar
  164. Ongena M, Jacques P, Toure Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38PubMedGoogle Scholar
  165. Paananen A, Mikkola R, Sareneva T et al (2002) Inhibition of human natural killer cell activity by cereulide, an emetic toxin from bacillus cereus. Clin Exp Immunol 129(3):420–428PubMedPubMedCentralGoogle Scholar
  166. Pacwa-Plociniczak M, Ptaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654PubMedPubMedCentralGoogle Scholar
  167. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:149–162Google Scholar
  168. Pandey M, Verma RK, Saraf SA (2010) Nutraceuticals: new era of medicine and health. Asian J Pharm Clin Res 3(1):11–15Google Scholar
  169. Pathak KV, Bose A, Keharia H (2014) Characterization of novel Lipopeptides produced by Bacillus tequilensis P15 using liquid chromatography coupled electron spray ionization tandem mass spectrometry (LC–ESI–MS/MS). Int J Pept Res Ther 20:133–143Google Scholar
  170. Piper C, Draper LA, Cotter PD, Ross RP, Hill C (2009) A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J Antimicrob Chemother 64:546–551PubMedGoogle Scholar
  171. Quintana VM, Torres NI, Wachsman MB, Sinko PJ, Castilla V, Chikindas M (2014) Antiherpes simplex virus type 2 activity of the antimicrobial peptide subtilosin. J Appl Microbiol 117:1253–1259PubMedPubMedCentralGoogle Scholar
  172. Rahman KSM, Banat IM, Thahira J, Thayumanavan T, Lakshmanaperumalsamy P (2002) Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith, and rhamnolipid biosurfactant. Bioresour Technol 81(1):25–32PubMedGoogle Scholar
  173. Ramaa C, Shirode A, Mundada A, Kadam V (2006) Nutraceuticals – an emerging era in the treatment and prevention of cardiovascular diseases. Curr Pharm Biotechnol 7(1):15–23.  https://doi.org/10.2174/138920106775789647CrossRefPubMedGoogle Scholar
  174. Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R (2019) Production and structure elucidation of anticancer potential surfactin from marine actinomycete Micromonospora marina. Process Biochem 78:169–177Google Scholar
  175. Rani K, Sharma P, Kumar S, Wati L, Kumar R, Gurjar DS, Kumar D (2019) Legumes for sustainable soil and crop management. In: Sustainable management of soil and environment. Springer, Singapore, pp 193–215Google Scholar
  176. Reddy KV, Aranha C, Gupta SM, Yedery RD (2004) Evaluation of antimicrobial peptide nisin as a safe vaginal contraceptive agent in rabbits: in vitro and in vivo studies. Reproduction 128:117–126PubMedGoogle Scholar
  177. Resende AH, Farias JM, Silva DD, Rufino RD, Luna JM, Stamford TC, Sarubbo LA (2019) Application of biosurfactants and chitosan in toothpaste formulation. Colloids Surf B: Biointerfaces 181:77–84PubMedGoogle Scholar
  178. Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83(3):541–553PubMedGoogle Scholar
  179. Rodrigues L, Van der Mei HC, Teixeira J, Oliveira R (2004) Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol 70(7):4408–4410PubMedPubMedCentralGoogle Scholar
  180. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618PubMedGoogle Scholar
  181. Rodríguez-López L, Rincón-Fontán M, Vecino X, Cruz JM, Moldes AB (2019) Preservative and irritant capacity of biosurfactants from different sources: a comparative study. J Pharm Sci 108:2296–2304.  https://doi.org/10.1016/j.xphs.2019.02.010CrossRefPubMedGoogle Scholar
  182. Roelants S, Van Renterghem L, Maes K, Everaert B, Vanlerberghe B, Demaeseneire S, Soetaert W (2019) Microbial biosurfactants: from lab to market. In: C. Press (ed) Microbial biosurfactants and their environmental and industrial applications. CRC Press, Boca Raton/London/New YorkGoogle Scholar
  183. Rudzki L, Ostrowska L, Pawlak D, Małus A, Pawlak K, Waszkiewicz N, Szulc A (2019) Probiotic lactobacillus plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: a double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 100:213–222PubMedGoogle Scholar
  184. Ruiz-Matute AI, Corzo-Martínez M, Montilla A, Olano A, Copovi P, Corzo N (2012) Presence of mono-, di- and galactooligosaccharides in commercial lactose-free UHT dairy products. J Food Compos Anal 28(2):164–169Google Scholar
  185. Sa RB, An X, Sui JK, Wang XH, Ji C, Wang CQ, Li Q, Hu YR, Liu X (2018) Purification and structural characterization of fengycin homologues produced by Bacillus subtilis from poplar wood bark. Australas Plant Pathol 47(3):259–268Google Scholar
  186. Sabo SS, Converti A, Ichiwaki S, Oliveira RPS (2019) Bacteriocin production by lactobacillus plantarum ST16Pa in supplemented whey powder formulations. J Dairy Sci 1:87–99.  https://doi.org/10.3168/jds.2018-14881CrossRefGoogle Scholar
  187. Sak K (2012) Chemotherapy and dietary phytochemical agents. Chemother Res Pract 2012:1–11Google Scholar
  188. Salazar F, Ortiz A, Sansinenea E (2017) Characterisation of two novel bacteriocin-like substances produced by Bacillus amyloliquefaciens ELI149 with broad-spectrum antimicrobial activity. J Glob Antimicrob Resist 11:177–182.  https://doi.org/10.1016/j.jgar.2017.08.008CrossRefPubMedGoogle Scholar
  189. Salminen S, Bouley C, Boutron-Ruault MC (1998) Br J Nutr 80(Suppl):S147–S171PubMedGoogle Scholar
  190. Sanchez-Garcia L, Martín L, Mangues R, Ferrer-Miralles N, Vázquez E, Villaverde A (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Factories 15(1):33Google Scholar
  191. Saranraj P, Naidu MA (2014) Microbial pectinases: a review. Glob J Tradit Med Syst 3:1–9Google Scholar
  192. Sarubbo LA, Farias CB, Campos-Takaki GM (2007) Co-utilization of canola oil and glucose on the production of a surfactant by Candida lipolytica. Curr Microbiol 54(1):68–73PubMedGoogle Scholar
  193. Schlessinger D (1993) Bacterial toxins. In: Schaechter M, Medoff G, Einstein BI (eds) Mechanism of microbial disease, 2nd edn. Williams and Wilkins, Baltimore, pp 162–175Google Scholar
  194. Sewald X, Gebert-Vogl B, Prassl S et al (2008) Integrin subunit CD 18 is the T-lymphocyte receptor for the helicobacter pylori vacuolating cytotoxin. Cell Host Microbe 3(1):20–29PubMedGoogle Scholar
  195. Sharma D, Saharan BS (2016) Functional characterization of biomedical potential of biosurfactant produced by lactobacillus helveticus. Biotechnol Rep 11:27–35Google Scholar
  196. Sharma P, Sangwan S, Kaur H (2019) Process parameters for biosurfactant production using yeast Meyerozyma guilliermondii YK32. Environ Monit Assess 191(9):531PubMedGoogle Scholar
  197. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146PubMedGoogle Scholar
  198. Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6(2):174PubMedPubMedCentralGoogle Scholar
  199. Singh A, Sharma P, Kumari A, Kumar R, Pathak DV (2019) Management of root-knot nematode in different crops using microorganisms. In: Varma A, Tripathi S, Prasad R (eds) Plant biotic interactions. Springer, ChamGoogle Scholar
  200. Souza KST, Gudiña EJ, Azevedo Z, de Freitas V, Schwan RF, Rodrigues LR, Teixeira JA (2017) New glycolipid biosurfactants produced by the yeast strain Wickerhamomyces anomalus CCMA 0358. Colloids Surf B: Biointerfaces 154:373–382.  https://doi.org/10.1016/j.colsurfb.2017.03.041CrossRefPubMedGoogle Scholar
  201. Stokes JM, Lopatkin AJ, Lobritz MA, Collins JJ (2019) Bacterial metabolism and antibiotic efficacy. Cell Metab 30(2):251–259PubMedPubMedCentralGoogle Scholar
  202. Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie Van Leeuwenhoek 39:545–565PubMedGoogle Scholar
  203. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 43(10):1110–1111PubMedGoogle Scholar
  204. Sutyak KE, Anderson RA, Dover SE, Feathergill KA, Aroutcheva AA, Faro S, Chikindas ML (2008) Spermicidal activity of the safe natural antimicrobial peptide subtilosin. Infect Dis Obstet Gynecol 2008:540758.  https://doi.org/10.1155/2008/540758CrossRefPubMedPubMedCentralGoogle Scholar
  205. Suvarna VC, Boby VU (2005) Probiotics in human health: a current assessment. Curr Sci 88:1744–1748Google Scholar
  206. Swartz JR (1996) Escherichia coli recombinant DNA technology. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, 2nd edn. American Society of Microbiology Press, Washington, DC, pp 1693–1711Google Scholar
  207. Tada A, Zelaya H, Clua P, Salva S, Alvarez S, Kitazawa H (2016) Immunobiotic lactobacillus strains reduce small intestinal injury induced by intraepithelial lymphocytes after toll-like receptor 3 activation. Inflamm Res 65(10):771–783.  https://doi.org/10.1007/s00011-016-0957-7CrossRefPubMedGoogle Scholar
  208. Tahmourespour A, Salehi R, Kermanshahi RK, Eslami G (2011) The anti-biofouling effect of lactobacillus fermentum-derived biosurfactant against Streptococcus mutans. Biofouling 27:385–392PubMedGoogle Scholar
  209. Takeda A, Cooper K, Bird A, Baxter L, Frampton GK, Gospodarevskaya E, Welch K, Bryant J (2010) Recombinant human growth hormone for the treatment of growth disorders in children: a systematic review and economic evaluation. Health Technol Assess (Winch Eng) 14(42):1–209Google Scholar
  210. Tesh VL, Ramegowda B, Samuel JE (1994) Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect Immun 62(11):5085–5094PubMedPubMedCentralGoogle Scholar
  211. Thanomsub B, Watcharachaipong T, Chotelersak K, Arunrattiyakorn P, Nitoda T, Kanzaki H (2004) Monoacylglycerols: glycolipid biosurfactants produced by a thermotolerant yeast, Candida ishiwadae. J Appl Microbiol 96:588–592PubMedGoogle Scholar
  212. Todorov SD, Wachsman M, Tomé E, Dousset X, Destro MT, Dicks LM, de Melo Franco BD, Vaz-Velho M, Drider D (2010) Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol 27(7):869–879PubMedGoogle Scholar
  213. Truong DD, Jost WH (2006) Botulinum toxin: clinical use. Parkinsonism Relat Disord 12(6):331–355PubMedGoogle Scholar
  214. Vajo Z, Fawcett J, Duckworth WC (2001) Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocr Rev 22:706–717PubMedGoogle Scholar
  215. van Staden AD, Brand AM, Dicks LM (2012) Nisin F-loaded brushite bone cement prevented the growth of Staphylococcus aureus in vivo. J Appl Microbiol 112:831–840PubMedGoogle Scholar
  216. Vanittanakom N, Loeffler W, Koch U, Jung G (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29- 3. J Antibiot 39:888–901PubMedGoogle Scholar
  217. Vecino X, Cruz JM, Moldes AB, Rodrigues LR (2017) Biosurfactants in cosmetic formulations: trends and challenges. Crit Rev Biotechnol 37(7):911–923.  https://doi.org/10.1080/07388551.2016.1269053CrossRefPubMedGoogle Scholar
  218. Vidanarachchi JK, Kurukulasuriya MS, Malshani Samaraweera A, Silva KFST (2012) Applications of marine nutraceuticals in dairy products. Adv Food Nutr Res 65:457–478.  https://doi.org/10.1016/b978-0-12-416003-3.00030-5CrossRefPubMedGoogle Scholar
  219. Vijayakuma S, Saravanan V (2015) Biosurfactants—types sources and applications. Res J Microbiol 10(5):181–192.  https://doi.org/10.3923/jm.2015.181.192CrossRefGoogle Scholar
  220. Villena J, Salva S, Nuñez M, Corzo J, Tolaba R, Faedda J (2012) Probiotics for everyone! The novel immunobiotic Lactobacillus rhamnosus CRL1505 and the beginning of social probiotic programs in Argentina. Int J Biotechnol Wellness Ind 1:189–198.  https://doi.org/10.6000/1927-3037/2012.01.03.05CrossRefGoogle Scholar
  221. Villena J, Vizoso-Pinto MG, Kitazawa H (2016) Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection. Front Immunol 7:563.  https://doi.org/10.3389/fimmu.2016.00563CrossRefPubMedPubMedCentralGoogle Scholar
  222. Wall R, Marques TM, O’Sullivan O, Ross RP, Shanahan F, Quigley EM, Dinan TG, Kiely B, Fitzgerald GF, Cotter PD, Fouhy F, Stanton C (2012) Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. Am J Clin Nutr 95(5):1278–1287PubMedGoogle Scholar
  223. Wall R, Cryan JF, Ross RP, Fitzgerald GF, Dinan TG, Stanton C (2014) Bacterial neuroactive compounds produced by psychobiotics. In: Microbial endocrinology: the microbiota-gut-brain axis in health and disease. Springer, New York, pp 221–239.  https://doi.org/10.1007/978-1-4939-0897-4_10CrossRefGoogle Scholar
  224. Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252PubMedGoogle Scholar
  225. Wang J, Liu J, Wang X, Yao J, Yu Z (2004) Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol 39:98–102PubMedGoogle Scholar
  226. Wang J, Guleria S, Koffas MA, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104PubMedGoogle Scholar
  227. Wang Y, Qin Y, Zhang Y, Wu R, Li P (2018) Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against listeria monocytogenes. Food Control 121:888–899.  https://doi.org/10.1016/j.foodcont.2018.10.025CrossRefGoogle Scholar
  228. Warda AK, Rea K, Fitzgerald P, Hueston C, Gonzalez-Tortuero E, Dinan TG, Hill C (2019) Heat-killed lactobacilli alter both microbiota composition and behaviour. Behav Brain Res 362:213–223PubMedGoogle Scholar
  229. Watanabe K (2004) Collagenolytic proteases from bacteria. Appl Microbiol Biotechnol 63(5):520–526PubMedGoogle Scholar
  230. Waters AL, Hill RT, Place AR, Hamann MT (2010) The expanding role of marine microbes in pharmaceutical development. Curr Opin Biotechnol 21(6):780–786PubMedPubMedCentralGoogle Scholar
  231. Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176(5):386–390PubMedGoogle Scholar
  232. Wei CL, Wang S, Yen JT, Cheng YF, Liao CL, Hsu CC, Wu CC, Tsai YC (2019) Antidepressant-like activities of live and heat-killed lactobacillus paracasei PS23 in chronic corticosterone-treated mice and possible mechanisms. Brain Res 1711:202–213PubMedGoogle Scholar
  233. Whitehead HR (1933) A substance inhibiting bacterial growth, produced by certain strains of lactic streptococci. Biochem J 27:1793–1800PubMedPubMedCentralGoogle Scholar
  234. WHO (2017) Cancer: key facts [Online]. World Health Organization. Available online at: http://www.who.int/mediacentre/factsheets/fs297/en/
  235. Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH (2017) Anticancer activities of surfactin and potential application of nanotechnology assisted surfactin delivery. Front Pharmacol 8:761PubMedPubMedCentralGoogle Scholar
  236. Xu J, Li W, Wu J, Zhang Y, Zhu Z, Liu J, Hu Z (2006) Stability of plasmid and expression of a recombinant gonadotropin-releasing hormone (GnRH) vaccine in Escherichia coli. Appl Microbiol Biotechnol 73(4):780–788PubMedGoogle Scholar
  237. Xu Y, Yang L, Li P, Gu Q (2019) Heterologous expression of class IIb bacteriocin Plantaricin JK in Lactococcus Lactis. Protein Expr Purif 159:10–16PubMedGoogle Scholar
  238. Yuliani H, Perdani MS, Savitri I, Manurung M, Sahlan M, Wijanarko A, Hermansyah H (2018) Antimicrobial activity of biosurfactant derived from Bacillus subtilis C19. Energy Procedia 153:274–278Google Scholar
  239. Zabian Bassetto R, Rodrigues MCC, Almeida MM, de Chiquetto NC (2014) Caracterização da produção de galactooligossacarideos por fermentação sequencial. Evidência Ciência e Biotecnogia 14:57–68Google Scholar
  240. Zaidi KU, Ali AS, Ali SA, Naaz I (2014) Microbial tyrosinases: promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem Res Int 2014:1–16Google Scholar
  241. Zampieri M, Zimmermann M, Claassen M, Sauer U (2017) Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell Rep 19(6):1214–1228PubMedGoogle Scholar
  242. Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21:187–190PubMedGoogle Scholar
  243. Zhang X, Candas M, Griko NB, Taussig R, Bulla LA Jr (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A 103(26):9897–9902PubMedPubMedCentralGoogle Scholar
  244. Zhang W, Wen K, Azevedo MS, Gonzalez A, Saif LJ, Li G (2008) Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Vet Immunol Immunopathol 121(3–4):222–231.  https://doi.org/10.1016/j.vetimm.2007.10.001CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Divya Kapoor
    • 1
  • Pankaj Sharma
    • 1
  • Mayur Mukut Murlidhar Sharma
    • 2
  • Anju Kumari
    • 3
  • Rakesh Kumar
    • 1
    Email author
  1. 1.Department of MicrobiologyCCS Haryana Agricultural UniversityHisarIndia
  2. 2.Department of Agriculture and Life IndustryKangwon National UniversityChuncheonRepublic of Korea
  3. 3.Center of Food Science & TechnologyCCS Haryana Agricultural UniversityHisarIndia

Personalised recommendations