Efficacy of Microbial Biocontrol Agents in Integration with Other Managing Methods against Phytoparasitic Nematodes

  • Mohammad Reza MoosaviEmail author


Biological control can be a safe alternative to detrimental chemical nematicides if its persistence and performance increase to a satisfactory level. But at present, no biocontrol agent (BCA) can provide adequate nematode control when applied alone. One approach to improve their controlling importance is to use them in integration with one or more compatible practices that enhance BCAs’ population, diversity, durability and efficacy. This goal may be achieved by combined use of BCAs with measures aiming at manipulating the soil environment in favour of BCAs, reducing nematode population and enhancing BCAs’ activity. Here a brief outline of some measures for controlling phytonematode is illustrated with extra attention to those that can be applied combinedly with biological control. Their advantages and disadvantages as well as their effects on altering biocontrol activity are demonstrated along with selected examples of each tactic. The reviewed strategies in combination with biocontrol are using host plant resistance (tolerance, resistance and induced resistance); agronomic practices (rotation, trap crops, antagonistic crops, cover crops, fallow, flooding, organic amendments and tillage); decrease in phytonematode populations (soil solarisation, biofumigation and chemical nematicides); and application more than one BCA. Finally, the future paths of integrated nematode management are designed.


Antagonists Farming practices IPM Nematophagous bacteria Nematophagous fungi 


  1. Agrios GN (ed) (2005) Plant pathology, 5th edn. Academic Press, New YorkGoogle Scholar
  2. Alesadi GA, Moosavi MR, Basirnia T (2017) Effect of nano-K, potassium sulphate and salicylic acid on tomato growth and control of root-knot nematode (Meloidogyne javanica). J Plant Prot 40(3):71–82; in Persian with English abstractGoogle Scholar
  3. Amer-Zareen ZMJ, Abid M, Gowen SR, Kerry BR (2004) Management of root knot nematode (Meloidogyne javanica) by biocontrol agents in two crop rotations. Int J Biol Biotechnol 1(1):67–73Google Scholar
  4. Amir-Ahmadi N, Moosavi MR, Moaf-Poorian GR (2017) Investigating the effect of soil texture and its organic content on the efficacy of Trichoderma harzianum in controlling Meloidogyne javanica and stimulating the growth of kidney bean. Biocontrol Sci Tech 27(1):115–127Google Scholar
  5. Anastasiadis IA, Giannakou IO, Prophetou-Athanasiadou DA, Gowen SR (2008) The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes. Crop Prot 27:352–361Google Scholar
  6. Ansari RA, Khan TA (2012a) Parasitic association of root-knot nematode, Meloidogyne incognita on guava. e-J Sci Technol 5:65–67Google Scholar
  7. Ansari RA, Khan TA (2012b) Diversity and community structure of phytonematodes associated with guava in and around Aligarh, Uttar Pradesh, India. Trends Biosci 5(3):202–204Google Scholar
  8. Ansari RA, Mahmood I (2017a) Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci Hortic 226:1–9Google Scholar
  9. Ansari RA, Mahmood I (2017b) Determination of disease incidence caused by Meloidogyne spp. and or Fusarium udum on pigeonpea in Aligarh district: a survey. Trends Biosci 10(24):5239–5243Google Scholar
  10. Ansari RA, Mahmood I (2019a) Plant health under biotic stress: volume 2: microbial interactions. Springer, Singapore. Scholar
  11. Ansari RA, Mahmood I (2019b) Plant health under biotic stress: volume 1: organic strategies. Springer, Singapore. Scholar
  12. Ansari RA, Rizvi R, Sumbul A, Mahmood I (2017a) PGPR: current vogue in sustainable crop production. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 455–472Google Scholar
  13. Ansari RA, Mahmood I, Rizvi R, Sumbul A (2017b) Siderophores: augmentation of soil health and crop productivity. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics in agroecosystem. Springer, Singapore, pp 291–312Google Scholar
  14. Ansari RA, Sumbul A, Rizvi R, Mahmood I (2019) Organic soil amendments: potential tool for soil and plant health management. In: Ansari RA, Mahmood I (eds) Plant health under biotic stress. Springer, Singapore, pp 1–35Google Scholar
  15. Ashraf MS, Khan TA (2010) Integrated approach for the management of Meloidogyne javanica on eggplant using oil cakes and biocontrol agents. Arch Phytopathol Plant Protect 43(6):609–614Google Scholar
  16. Atkins SD, Hidalgo-Diaz L, Kalisz H, Mauchline TH, Hirsch PR, Kerry BR (2003) Development of a new management strategy for the control of root-knot nematodes (Meloidogyne spp.) in organic vegetable production. Pest Manag Sci 59:183–189PubMedGoogle Scholar
  17. Baker KF (1981) Biological control. In: Mace E, Bell AA, Beckman CH (eds) Fungal wilt diseases of plants. Academic Press, London, pp 523–561Google Scholar
  18. Bakker E, Dees R, Bakker J, Goverse A (2006) Mechanisms involved in plant resistance to nematodes. In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer Science + Business Media, New York, pp 314–334Google Scholar
  19. Bao Y, Neher DA, Chen SY (2011) Effect of soil disturbance and biocides on nematode communities and extracellular enzyme activity in soybean cyst nematode suppressive soil. Nematology 13:687–699Google Scholar
  20. Barker KR (1991) Rotation and cropping systems for nematode control: the North Carolina experience-introduction. J Nematol 23(3):342–343PubMedPubMedCentralGoogle Scholar
  21. Bernard EC, Self LH, Tyler DD (1996) Fungal parasitism of soybean cyst nematode, Heterodera glycines (Nemata: Heteroderidae), in differing cropping-tillage regimes. Appl Soil Ecol 5:57–70Google Scholar
  22. Brahma U, Borah A (2016) Management of Meloidogyne incognita on pea with bioagents and organic amendment. Indian J Nematol 46:58–61Google Scholar
  23. Brown SM, Nordmeyer D (1985) Synergistic reduction in root galling by Meloidogyne javanica with Pasteuria penetrans and nematicide. Rev Nematol 8:285–286Google Scholar
  24. Bruinsma J (ed) (2003) World agriculture: towards 2015/2030: an FAO perspective. Earthscan Publications, LondonGoogle Scholar
  25. Castagnone-Sereno P (2002) Genetic variability in parthenogenesis root-knot nematodes, Meloidogynes pp., and their ability to overcome plant resistance genes. Nematology 4:605–608Google Scholar
  26. Chen ZX, Dickson DM (1998) Review of Pasteuria penetrans: biology, ecology, and biological control potential. J Nematol 30:313–340PubMedPubMedCentralGoogle Scholar
  27. Chen S, Liu S (2007) Effects of tillage and crop sequence on parasitism of Heterodera glycines juveniles by Hirsutella spp. and on juvenile population density. Nematropica 37:93–106Google Scholar
  28. Chen SY, Reese CD (1999) Parasitism of the nematode Heterodera glycines by the fungus Hirsutella rhossiliensis as influenced by crop sequence. J Nematol 31:437–444Google Scholar
  29. Chen J, Abawi GS, Zuckerman BM (2000) Efficacy of Bacillus thuringiensis, Paecilomyces marquandii, and Streptomyces costaricanus with and without organic amendments against Meloidogyne hapla infecting lettuce. J Nematol 32:70–77Google Scholar
  30. Ciancio A, Pieterse CMJ, Mercado-Blanco J (2016) Editorial: harnessing useful rhizosphere microorganisms for pathogen and pest biocontrol. Front Microbiol 7:1620PubMedPubMedCentralGoogle Scholar
  31. Conrath U (2011) Molecular aspects of defense priming. Trends Plant Sci 16:524–531PubMedGoogle Scholar
  32. Cook R, Starr JL (2006) Resistant cultivars. In: Perry RN, Moens M (eds) Plant nematology. CABI Publishing, Wallingford, UK, pp 370–389Google Scholar
  33. Cottage A, Urwin P (2013) Genetic engineering for resistance. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI Publishing, Wallingford, UK, pp 437–458Google Scholar
  34. Crump DH (1989) Interaction of cyst nematodes with their natural antagonists. Asp Appl Biol 22:135–140Google Scholar
  35. Crump DH (1991) Biological control of the beet cyst nematode. Br Sugar Beet Rev 59:54–55Google Scholar
  36. Crump DH (1998) Biological control of potato and beet cyst nematodes. Asp Appl Biol 53:383–386Google Scholar
  37. Culbreath AK, Rodriguez-Kabana R, Morgan-Jones G (1986) Chitin and Paecilomyces lilacinus for control of Meloidogyne arenaria. Nematropica 16:153–166Google Scholar
  38. Cumagun CJR, Moosavi MR (2015) Significance of biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CABI Publishing, Wallingford, UK, pp 50–78Google Scholar
  39. Dallemole-Giaretta R, de Freitas LG, Lopes EA, Ferraz S, de Podesta GS, Agnes EL (2011) Cover crops and Pochonia chlamydosporia for the control of Meloidogyne javanica. Nematology 13:919–926Google Scholar
  40. Dalmasso A, Castagnone-Sereno P, Abad P (1992) Seminar: tolerance and resistance of plants to nematodes-knowledge, needs and prospects. Nematologica 38:466–472Google Scholar
  41. Dandurand L-M, Knudsen GR (2016) Effect of the trap crop Solanum sisymbriifolium and two biocontrol fungi on reproduction of the potato cyst nematode, Globodera pallida. Ann Appl Biol 169(2):180–189Google Scholar
  42. Davies LJ, Elling AA (2015) Resistance genes against plant-parasitic nematodes: a durable control strategy? Nematology 17:249–263Google Scholar
  43. Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155PubMedPubMedCentralGoogle Scholar
  44. Devi TS, Mahanta B, Borah A (2016) Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on brinjal. Indian J Nematol 46:161–164Google Scholar
  45. Devine KJ, Dunne C, O’Gara F, Jones PW (1999) The influence of in-egg mortality and spontaneous hatching on the decline of Globodera rostochiensis during crop rotation in the absence of the host potato crop in the field. Nematology 1:637–645Google Scholar
  46. Dhawan SC, Singh S (2009) Compatibility of Pochonia chlamydosporia with nematicide and neem cake against root-knot nematode, Meloidogyne incognita infesting okra. Indian J Nematol 39:85–89Google Scholar
  47. Duponnois R, Netscher C, Mateille T (1997) Effect of the rhizosphere microflora on Pasteuria penetrans parasitizing Meloidogyne graminicola. Nematol Mediterr 25:99–103Google Scholar
  48. Duponnois R, Ba AM, Mateille T (1998) Effects of some rhizosphere bacteria for the biocontrol of nematodes of the genus Meloidogyne with Arthrobotrys oligospora. Fundam Appl Nematol 21:157–163Google Scholar
  49. DuPont ST, Ferris H, Van Horn M (2009) Effects of cover crop quality and quantity on nematode-based soil food webs and nutrient cycling. Appl Soil Ecol 41:157–167Google Scholar
  50. Ebone LA, Kovaleski M, Deuner CC (2019) Nematicides: history, mode, and mechanism action. Plant Sci Today 6(2):91–97Google Scholar
  51. Esnard J, Marban-Mendoza N, Zuckerman BM (1998) Effects of three microbial broth cultures and an organic amendment on growth and populations of free-living and plant-parasitic nematodes on banana. Eur J Plant Pathol 104:457–463Google Scholar
  52. FAO (Agriculture Organization of the United Nations), IFAD (International Fund for Agricultural Development) & WFP (World Food Programme) (2013) The state of food insecurity in the world 2013, the multiple dimensions of food security. FAO, Rome, ItalyGoogle Scholar
  53. Fatemy S, Moosavi MR (2019) Nematotoxic potential of daikon, chinaberry and purslane herbal green manures against Globodera rostochiensis in vitro and microplot. J Crop Prot 8(1):69–80Google Scholar
  54. Fortnum BA, Karlen DL (1985) Effects of tillage systems and irrigation on population densities of plant nematodes in field corn. J Nematol 17:25–28PubMedPubMedCentralGoogle Scholar
  55. Gautam A, Siddiqui ZA, Mahmood I (1995) Integrated management of Meloidogyne incognita on tomato. Nematol Mediterr 23:245–247Google Scholar
  56. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818PubMedGoogle Scholar
  57. Godoy G, Rodriguez-Kabana R, Shelby RA, Morgan-Jones G (1983) Chitin amendments for control of Meloidogyne arenaria infested soil. II. Effects on microbial population. Nematropica 13:63–74Google Scholar
  58. Gogoi BB, Gill JS (2001) Compatibility of Pasteuria penetrans with carbofuran and organic amendments, its effect on Heterodera cajani. Ann Plant Prot Sci 9(2):254–257Google Scholar
  59. Gogoi D, Mahanta B (2013) Comparative efficacy of Glomus fasciculatum, Trichoderma harzianum, carbofuran and carbendazim in management of Meloidogyne incognita and Rhizoctonia solani disease complex on French bean. Ann Plant Prot Sci 21:172–175Google Scholar
  60. Gomes CB, De Freitas LG, Ferraz S, Oliveira RDDL, Da Silva RV (2002) Influence of cattle manure content in the substrate on the multiplication of Pasteuria penetrans in tomato. Nematol Brasil 26:59–65Google Scholar
  61. Gomiero T, Pimentel D, Paoletti MG (2011) Is there a need for a more sustainable agriculture? Crit Rev Plant Sci 30:6–23Google Scholar
  62. Gopinatha KV, Gowda DN, Nagesh M (2002) Management of root-knot nematode Meloidogyne incognita on tomato using bioagent Verticillium chlamydosporium, neem cake, marigold and carbofuran. Indian J Nematol 32:179–181Google Scholar
  63. Goswami BK, Pandey RK, Rathour KS, Bhattacharya C, Singh L (2006) Integrated application of some compatible biocontrol agents along with mustard oil seed cake and furadan on Meloidogyne incognita infecting tomato plants. J Zhejiang Univ Sci B 7(11):873–875PubMedPubMedCentralGoogle Scholar
  64. Goswami J, Pandey RK, Tewari JP, Goswami BK (2008) Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Health B 43(3):237–240PubMedGoogle Scholar
  65. Grubišić D, Uroić G, Ivošević A, Grdiša M (2018) Nematode control by the use of antagonistic plants. Agric Conspec Sci 83(4):269–275Google Scholar
  66. Hallmann J, Rodriguez-Kabana R, Kloepper JW (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560Google Scholar
  67. Haseeb A, Kumar V, Abuzar S, Sharma A (2007) Integrated management of Meloidogyne incognita-Sclerotinia sclerotiorum disease complex of Mentha arvensis cv. Gomti by using Trichoderma species, neem seed powder, carbofuran and topsin-M. In: 7th national symposium on plant protection options implementation and feasibility. 20–22 Dec, p. 102Google Scholar
  68. Hashem M, Abo-Elyousr KA (2011) Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Prot 30:285–292Google Scholar
  69. Haydock PPJ, Woods SR, Grove IG, Hare MC (2013) Chemical control of nematodes. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI Publishing, Wallingford, UK, pp 459–479Google Scholar
  70. Hildalgo-Diaz L, Kerry BR (2008) Integration of biological control with other methods of nematode management. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetableand grain crops nematodes. Springer, Dordrecht, the Netherlands, pp 29–49Google Scholar
  71. Hillocks RJ (2012) Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot 31:85–93Google Scholar
  72. Hojat Jalali AA, Segers R, Coosemans J (1998) Biocontrol of Heterodera schachtii using combinations of the sterile fungus, StFCH1-l, Embellisia chlamydospora and Verticillium chlamydosporium. Nematologica 44:345–355Google Scholar
  73. Hollis JP, Rodriguez-Kabana RA (1966) Rapid kill of nematodes in flooded soil. Phytopathology 56:1015–1019PubMedGoogle Scholar
  74. Hooks CRR, Wang K-H, Ploeg A, McSorley R (2010) Using marigold (Tagetes spp.) as a cover crop to protect crops from plant-parasitic nematodes. Appl Soil Ecol 46:307–320Google Scholar
  75. Jacobs H, Gray SN, Crump DH (2003) Interactions between nematophagous fungi and consequences for their potential as biological agents for the control of potato cyst nematodes. Mycol Res 107(1):47–56PubMedGoogle Scholar
  76. Jaffee BA (2004) Do organic amendments enhance the nematode-trapping fungi Dactylellina haptotyla and Arthrobotrys oligospora? J Nematol 36:267–275PubMedPubMedCentralGoogle Scholar
  77. Jaffee B, Phillips R, Muldoon A, Mangel M (1992) Density dependent host-pathogen dynamics in soil microcosms. Ecology 73:495–506Google Scholar
  78. Jaffee BA, Ferris H, Stapleton JJ, Norton MVK, Muldoon AE (1994) Parasitism of nematodes by the fungus Hirsutella rhossiliensis as affected by certain organic amendments. J Nematol 26:152–161PubMedPubMedCentralGoogle Scholar
  79. Jaffee BA, Ferris H, Scow KM (1998) Nematode-trapping fungi in organic and conventional cropping systems. Phytopathology 88:344–350PubMedGoogle Scholar
  80. Kaloshian I, Desmond OJ, Atamian HS (2011) Disease resistance-genes and defense responses during incompatible interactions. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Dordrecht, the Netherlands, pp 309–325Google Scholar
  81. Kerry BR (1987) Biological control. In: Brown RH, Kerry BR (eds) Principles and practice of nematode control in crops. Academic Press, Sydney, Australia, pp 233–263Google Scholar
  82. Kerry BR (2000) Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu Rev Phytopathol 38:423–441PubMedGoogle Scholar
  83. Khan A, Williams KL, Nevalainen HKM (2006) Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. BioControl 51:643–658Google Scholar
  84. Khan MR, Mohiddin FA, Ejaz MN, Khan MM (2012) Management of root-knot disease in eggplant through the application of biocontrol fungi and dry neem leaves. Turk J Biol 36:161–169Google Scholar
  85. Knudsen GR, Dandurand LMC (2014) Ecological complexity and the success of fungal biological control agents. Adv Agric 2014:542703, 11 pagesGoogle Scholar
  86. Ko MP, Schmitt DP (1996) Changes in plant-parasitic nematode populations in pineapple fields following inter-cycle cover crops. J Nematol 28:546–556PubMedPubMedCentralGoogle Scholar
  87. Koenning SR, Barker KR, Bowman DT (2001) Resistance as tactic for management of Meloidogyne incognita on cotton in North Carolina. J Nematol 33:126–131Google Scholar
  88. Kokalis-Burelle N, Mahaffee WF, Rodriguez-Kabana J, Kloepper W, Bowen KL (2002) Effects of switchgrass (Panicum virgatum) rotations with peanut (Arachis hypogaea L.) on nematode populations and soil microflora. J Nematol 34:98–105Google Scholar
  89. Kratochvil RJ, Sardanelli S, Everts K, Gallagher E (2004) Evaluation of crop rotation and other cultural practices for management of root-knot and lesion nematodes. Agron J 96:1419–1428Google Scholar
  90. Kruger DHM, Fourie JC, Malan AP (2013) Cover crops with biofumigation properties for the suppression of plant-parasitic nematodes: a review. South Afr J Enol Viticulture 34(2):287–295Google Scholar
  91. Lalezar M, Moosavi MR, Hesami A (2016) Changes in zucchini defense responses against Meloidogyne javanica (Rhabditida: Meloidogynidae) induced by Pochonia chlamydosporia. Munis Entomol Zool 11(1):151–159Google Scholar
  92. Leadbeater A, Staub T (2014) Exploitation of induced resistance: a commercial perspective. In: Walters DR, Newton AC, Lyon GD (eds) Induced resistance for plant defense: a sustainable approach to crop protection. Blackwell, Oxford, pp 300–315Google Scholar
  93. de Leij FAAM, Davies KG, Kerry BR (1992) The use of Verticillium chlamydosporium Goddard and Pasteuria penetrans (Thorne) Sayre & Starr alone and in combination to control Meloidogyne incognita on tomato plants. Fundam Appl Nematol 15:235–242Google Scholar
  94. Liang L-M, Zou C-G, Xu J, Zhang KQ (2019) Signal pathways involved in microbe–nematode interactions provide new insights into the biocontrol of plant-parasitic nematodes. Philos Trans Roy Soc B 374:20180317Google Scholar
  95. López-Lima D, Sánchez-Nava P, Carrión G, Núñez-Sánchez A (2013) 89% reduction of a potato cyst nematode population using biological control and rotation. Agron Sustain Dev 33(2):425–431Google Scholar
  96. Manzanilla-López RH, Esteves I, Powers SJ, Kerry BR (2011) Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. Ann Appl Biol 159:118–129Google Scholar
  97. de Medeiros HA, Resende RS, Ferreira FC, Freitas LG, Rodrigues FÁ (2015) Induction of resistance in tomato against Meloidogyne javanica by Pochonia chlamydosporia. Nematoda 2:e10015. Scholar
  98. de Medeiros HA, de Araújo Filho JV, de Freitas LG, Castillo P, Rubio MB, Hermosa R, Monte E (2017) Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci Rep 7:40,216. Scholar
  99. Mendoza AR, Sikora RA (2009) Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. BioControl 54:263–272Google Scholar
  100. Meyer SLF, Roberts DP (2002) Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. J Nematol 34(1):1–8PubMedPubMedCentralGoogle Scholar
  101. Meyer SLF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao W (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31:75–86Google Scholar
  102. Molinari S (2011) Natural genetic and induced plant resistance, as a control strategy to plant-parasitic nematodes alternative to pesticides. Plant Cell Rep 30:311–323PubMedGoogle Scholar
  103. Moosavi MR (2017) The effect of gibberellin and abscisic acid on plant defense responses and on disease amount caused by Meloidogyne javanica on tomato plants. J Gen Plant Pathol 83(3):173–184Google Scholar
  104. Moosavi MR, Askary TH (2015) Nematophagous fungi- commercialization. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CABI Publishing, Wallingford, UK, pp 187–202Google Scholar
  105. Moosavi MR, Ghani M (2019) The optimal concentrations of Purpureocillium lilacinum and jasmonic acid in controlling Meloidogyne javanica on tomato. Arch Phytopathology Plant Protect 52(6–7):582–600Google Scholar
  106. Moosavi MR, Zare R (2012) Fungi as biological control agents of plant-parasitic nematodes. In: Merillon JM, Ramawat KG (eds) Plant defence: biological control, progress in biological control 12. Dordrecht, Netherlands, Springer Science + Business Media, pp 67–107Google Scholar
  107. Moosavi MR, Zare R (2015) Factors affecting commercial success of biocontrol agents of phytonematodes. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CABI Publishing, Wallingford, UK, pp 423–445Google Scholar
  108. Moosavi MR, Zare R (2016) Present status and the future prospects of microbial biopesticides in Iran. In: Singh HB, Sarma BK, Keswani C (eds) Agriculturally important microorganisms: commercialization and regulatory requirements in Asia. Springer, Singapore, pp 293–305Google Scholar
  109. Moosavi MR, Shakeri S, Mohammadi S (2015) The ability of separate and combined application of five nematopathogenic fungi against Meloidogyne javanica. Iran J Plant Prot Sci 46(1):179–190; in Persian with English abstractGoogle Scholar
  110. Mostafanezhad H, Sahebani N, Nourinejhad Zarghani S (2014) Control of root-knot nematode (Meloidogyne javanica) with combination of Arthrobotrys oligospora and salicylic acid and study of some plant defense responses. Biocontrol Sci Tech 24(2):203–215Google Scholar
  111. Nagesh M, Jankiram T (2004) Root-knot nematode problem in polyhouse roses and its management using dazomat, neem cake and Pochonia chlamydosporia (Verticillium chlamydosporium). J Ornamental Hortic New Series 7(2):147–152Google Scholar
  112. Narasimhamurthy HB, Ravindra H, Sehgal M (2017) Management of rice root-knot nematode, Meloidogyne graminicola. Int J Pure Appl Biosci 5:268–276Google Scholar
  113. Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Tahna Maafi Z (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer Science + Business Media, Dordrecht, the Netherlands, pp 21–43Google Scholar
  114. Noel GR, Atibalentja N, Bauer SJ (2010) Suppression of Heterodera glycines in a soybean field artificially infested with Pasteuria nishizawae. Nematropica 40:41–52Google Scholar
  115. Oduor-Owino P (2003) Integrated management of root-knot nematodes using agrochemicals, organic matter and the antagonistic fungus, Paecilomyces lilacinus in natural field soil. Nematol Mediterr 31:121–123Google Scholar
  116. Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments—a review. Appl Soil Ecol 44:101–115Google Scholar
  117. Owino OP (1992) Effect of marigold leaf extract and captafol on fungal parasitism of root knot nematode eggs—Kenyan isolates. Nematol Mediterr 20:211–213Google Scholar
  118. Paparu P, Dubois T, Coyne D, Viljoen A (2007) Defense-related gene expression in susceptible and tolerant bananas (Musa spp.) following inoculation with non-pathogenic Fusarium oxysporum endophytes and challenge with Radopholus similis. Physiol Mol Plant Pathol 71:149–157Google Scholar
  119. Ploeg A (2008) Biofumigation to manage plant-parasitic nematodes. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, the Netherlands, pp 239–248Google Scholar
  120. Puertas A, Hidalgo-Díaz L (2007) Influence of the host plant and its interaction with Meloidogyne incognita on the effectiveness of Pochonia chlamydosporia var. catenulata. Revista de Protección Vegetal 22(2):104–109; in Spanish with English abstractGoogle Scholar
  121. Reddy PP, Rao MS, Nagesh M (1996) Management of the citrus nematode, Tylenchulus semipenetrans, by integration of Trichoderma harzianum with oil cakes. Nematol Mediterr 24:265–267Google Scholar
  122. Reddy PP, Rao MS, Nagesh M (1999) Eco-friendly management of Meloidogyne incognita on tomato by integration of Verticillium chlamydosporium with neem and calotropis leaves. J Plant Dis Prot 106(5):530–533Google Scholar
  123. Renčo M (2013) Organic amendments of soil as useful tools of plant parasitic nematodes control. Helminthologia 50(1):3–14Google Scholar
  124. Roberts PA (2002) Concepts and consequences of resistance. In: Starr JL, Cook R, Bridge J (eds) Plant resistance to parasitic nematodes. CABI Publishing, Wallingford, pp 23–41Google Scholar
  125. Rodriguez-Kabana R, Morgan-Jones G, Chet I (1987) Biological control of nematodes: soil amendments and microbial antagonists. Plant Soil 100(1–3):237–247Google Scholar
  126. Roget DK, Rovira AD (1987) A review on the effect of tillage on cereal cyst nematode. Wheat Research Council of Australia, Workshop Report Series, No. 1, pp 31–35Google Scholar
  127. Rumbos CI, Kiewnick S (2006) Effect of plant species on persistence of Paecilomyces lilacinus strain 251 in soil and on root colonization by the fungus. Plant Soil 283:25–31Google Scholar
  128. Sajadi Z, Moosavi MR, Moaf-Poorian GR (2016) The effect of soil texture and organic matter on ability of Trichoderma longibrachiatum in controlling Meloidogyne javanica and growth promoting of kidney bean. Iran J Plant Prot Sci 46(2):227–240Google Scholar
  129. Sano Z (2002) Nematode management strategies in east Asian countries. Nematology 4:129–130Google Scholar
  130. Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33Google Scholar
  131. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43PubMedGoogle Scholar
  132. Siddiqui ZA, Mahmood I (1996) Biological control of plant-parasitic nematodes by fungi: a review. Bioresour Technol 58:229–239Google Scholar
  133. Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 30:245–270Google Scholar
  134. Sikora RA, Bridge J, Starr JL (2005) Management practices: an overview of integrated nematode management technologies. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. Wallingford, CABI Publishing, pp 793–825Google Scholar
  135. Sipes BS, Schmitt DP (1998) Nematode-pesticide interactions. In: Barker KR, Pederson GA, Windham GL (eds) Plant and nematode interactions. American Society of Agronomy, Madison, WI, pp 173–185Google Scholar
  136. Sokhandani Z, Moosavi MR, Basirnia T (2016) Optimum levels of Trichoderma longibrachiatum concentration and cadusafos dose in controlling Meloidogyne javanica on zucchini plants. J Nematol 48(1):54–63PubMedPubMedCentralGoogle Scholar
  137. Somasekhar N, Gill JS (1991) Efficacy of Pasteuria penetrans alone and in combination with carbofuran controlling Meloidogyne incognita. Indian J Nematol 21:61–65Google Scholar
  138. Spadaro D, Gullino ML (2005) Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot 24:601–613Google Scholar
  139. Starr JL, McDonald AH, Claudius-Cole AO (2013) Nematode resistance in crops. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI Publishing, Wallingford, pp 411–436Google Scholar
  140. Stirling GR (1988) Biological control of plant-parasitic nematodes. In: Poinar GO Jr, Jansson H-B (eds) Diseases of nematodes, volume II. CRC Press, Boca Raton, Fl, pp 93–139Google Scholar
  141. Stirling GR (1999) Increasing the adoption of sustainable, integrated management strategies for soilborne diseases of high-value annual crops. Australas Plant Pathol 28:72–79Google Scholar
  142. Stirling GR (2014) The soil environment and the soil–root interface. In: Stirling GR (ed) Biological control of plant-parasitic nematodes, soil ecosystem management in sustainable agriculture, 2nd edn. CABI Publishing, Wallingford, UK, pp 15–47Google Scholar
  143. Stirling GR, Wilson EJ, Stirling AM, Pankurst CE, Moody PW, Bell MJ, Halpin N (2005) Amendments of sugarcane trash induce suppressiveness to plant-parasitic nematodes in a sugarcane soil. Australas Plant Pathol 34:203–211Google Scholar
  144. Stirling GR, Halpin NV, Bell MJ (2011) A surface mulch of crop residues enhances suppressiveness to plant-parasitic nematodes in sugarcane soils. Nematropica 41:109–121Google Scholar
  145. Stirling GR, Smith MK, Smith JP, Stirling AM, Hamill SD (2012) Organic inputs, tillage and rotation practices influence soil health and suppressiveness to soilborne pests and pathogens of ginger. Australas Plant Pathol 41:99–112Google Scholar
  146. Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116PubMedGoogle Scholar
  147. Sturz AV, Kimpinski J (2004) Endoroot bacteria derived from marigold (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262(1–2):241–249Google Scholar
  148. Szabó M, Csepregi K, Gálber M, Virányi F, Fekete C (2012) Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol Control 63:121–128Google Scholar
  149. Taba S, Moromizato K, Takaesu Z, Ooshiru A, Nasu K (2006) Control of the southern root-knot nematode, Meloidogyne incognita using granule formulations containing nematode-trapping fungus, Monacrosporium ellipsosporum and a nematicide. Jap J Appl Entomol Zool 50:115–122Google Scholar
  150. Takur M, Sohal BS (2013) Role of elicitors in inducing resistance in plants against pathogen infection: a review. ISRN Biochem 2013:762412. Scholar
  151. Talavera M, Itou K, Mizukubo T (2002a) Combined application of Glomus sp. and Pasteuria penetrans for reducing Meloidogyne incognita (Tylenchida: Meloidogynidae) populations and improving tomato growth. Appl Entomol Zool 37:61–67Google Scholar
  152. Talavera M, Mizukubo T, Itou K, Aiba S (2002b) Effect of spore inoculum and agricultural practices on the vertical distribution of the biocontrol plant-growth-promoting bacterium Pasteuria penetrans and growth of Meloidogyne incognita-infected tomato. Biol Fertil Soils 35:435–440Google Scholar
  153. Thoden TC, Korthals G, Termorshuizen A (2011) Organic amendments and their influences on plant-parasitic and free-living nematodes: a promising method for nematode management? Nematology 13:133–153Google Scholar
  154. Timper P (1999) Effect of crop rotation and nematicide use on abundance of Pasteuria penetrans. J Nematol 31:575; abstractGoogle Scholar
  155. Timper P (2011) Utilization of biological control for managing plant-parasitic nematodes. In: Davies K, Spiegel Y (eds) Biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, London, pp 259–289Google Scholar
  156. Timper P (2014) Conserving and enhancing biological control of nematodes. J Nematol 46(2):75–89PubMedPubMedCentralGoogle Scholar
  157. Timper P, Brodie BB (1994) Effect of host-plant resistance and a nematode pathogenic fungus on Pratylenchus penetrans. Phytopathology 84:1090; abstractGoogle Scholar
  158. Timper P, Parajuli G (2012) Suppression of Meloidogyne incognita by Paecilomyces lilacinus is enhanced by planting cover crops. J Nematol 44:494–495; abstractGoogle Scholar
  159. Timper P, Minton NA, Johnson AW, Brenneman TB, Culbreath AK, Burton GW, Baker SH, Gascho GJ (2001) Influence of cropping systems on stem rot (Sclerotium rolfsii), Meloidogyne arenaria and the nematode antagonist Pasteuria penetrans in peanut. Plant Dis 85:767–772PubMedGoogle Scholar
  160. Timper P, Davis R, Jagdale G, Herbert J (2012) Resiliency of a nematode community and suppressive service to tillage and nematicide application. Appl Soil Ecol 59:48–59Google Scholar
  161. Tobin JD, Haydock PPJ, Hare MC, Woods SR, Crump DH (2008) Effect of the fungus Pochonia chlamydosporia and fosthiazate on the multiplication rate of potato cyst nematodes (Globodera pallid and G. rostochiensis) in potato crops grown under UK field conditions. Biol Control 46:194–201Google Scholar
  162. Trivedi PC, Barker KR (1986) Management of nematodes by cultural practices. Nematropica 16:213–236Google Scholar
  163. Tzortzakakis EA, Goewn SR (1994) Evaluation of Pasteuria penetrans alone and in combination with oxamyl, plant resistance and solarization for control of Meloidogyne spp. on vegetables grown in greenhouses in Crete. Crop Prot 13:455–462Google Scholar
  164. Van den Boogert PHJF, Velvis H, Ettema CH, Bouwman LA (1994) The role of organic matter in the population dynamics of the endoparasitic nematophagous fungus Drechmeria coniospora in microcosms. Nematologica 40:249–257Google Scholar
  165. Verdejo-Lucas S, Sorribas FJ, Ornat C, Galeano M (2003) Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathol 52:521–528Google Scholar
  166. Viaene NM, Abawi GS (2000) Hirsutella rhossiliensis and Verticillium chlamydosporium as biocontrol agents of the root-knot nematode Meloidogyne hapla on lettuce. J Nematol 32(1):85–100Google Scholar
  167. Viaene N, Coyne DL, Davies KG (2013) Biological and cultural management. In: Perry RN, Moens M (eds) Plant nematology, 2nd edn. CABI Publishing, Wallingford, UK, pp 383–410Google Scholar
  168. Vieira Dos Santos MC, Curtis RHC, Abrantes I (2014) The combined use of Pochonia chlamydosporia and plant defence activators—a potential sustainable control strategy for Meloidogyne chitwoodi. Phytopathol Mediterr 53(1):66–74Google Scholar
  169. Walker GE, Wachtel MF (1988) The influence of soil solarization and non-fumigant nematicides on infection of Meloidogyne javanica by Pasteuria penetrans. Nematologica 34:477–483Google Scholar
  170. Walters DR (2011) Sounding the alarm: signaling and communication in plant defense. In: Walters DR (ed) Plant defense: warding off attack by pathogens, herbivores, and parasitic plants. Blackwell Publishing, Oxford, pp 77–124Google Scholar
  171. Walters DR, Bennett AE (2014) Microbial induction of resistance to pathogens. In: Walters DR, Newton AC, Lyon GD (eds) Induced resistance for plant defense: a sustainable approach to crop protection. Blackwell Publishing, Oxford, pp 149–170Google Scholar
  172. Wang KH, Sipes BS, Schmitt DP (2001) Suppression of Rotylenchulus reniformis by Crotalaria juncea, Brassica napus, and Tagetes erecta. Nematropica 31:235–249Google Scholar
  173. Wang K-H, Sipes BS, Schmitt DP (2002) Management of Rotylenchulus reniformis in pineapple, Ananas comosus, by intercycle cover crops. J Nematol 34:106–114Google Scholar
  174. Wang KH, Sipes BS, Schmitt DP (2003) Enhancement of Rotylenchulus reniformis suppressiveness by Crotalaria juncea amendment in pineapple soils. Agric Ecosyst Environ 94:197–203Google Scholar
  175. Wang K-H, Mcsorley R, Gallaher RN, Kokalis-Burelle N (2008) Cover crops and organic mulches for nematode, weed and plant health management. Nematology 10(2):231–242Google Scholar
  176. Weller DM, Mavrodi DV, van Pelt JA, Pieterse CMJ, van Loon LC, Bakker PAHM (2012) Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403–412Google Scholar
  177. Westphal A (2011) Sustainable approaches to the management of plant-parasitic nematodes and disease complexes. J Nematol 43(2):122–125PubMedPubMedCentralGoogle Scholar
  178. Westphal A, Becker JO (2001) Soil suppressiveness to Heterodera schachtii under different cropping sequences. Nematology 3:551–558Google Scholar
  179. Widmer TL, Mitkowski NA, Abawi GS (2002) Soil organic matter and management of plant-parasitic nematodes. J Nematol 34:289–295PubMedPubMedCentralGoogle Scholar
  180. Xu X-M, Jeffries P, Pautasso M, Jeger MJ (2011) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024–1031PubMedGoogle Scholar
  181. Zaki MJ, Maqbool MA (1991) Combined efficacy of Pasteuria penetrans and other biocontrol agents on the control of root-knot nematode on okra. Pak J Nematol 9:49–52Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Plant Pathology, Marvdasht BranchIslamic Azad UniversityMarvdashtIran

Personalised recommendations