Advertisement

Elicitation as an Essential Strategy for Enhancing Anthraquinone Accumulation in Hairy Root Cultures of Rubia tinctorum

  • María PerassoloEmail author
  • Alejandra B. Cardillo
  • Víctor D. Busto
  • Stéphanie Rivière
  • Julieta Cerezo
  • Ana M. Giulietti
  • Julián Rodríguez Talou
Chapter
  • 10 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

Plant-derived drugs represent a significant proportion of the pharmaceutical market. Plant in vitro culture has emerged as a useful platform for producing secondary metabolites due to its multiple advantages: production under controlled culture conditions; independence from geographic, seasonal or weather conditions; and since it avoids the use of land and the extraction from the natural source, it has a low environmental impact. Since the production of secondary metabolites in plant in vitro cultures can be low, there are several strategies that can be applied to enhance the production of these compounds. Elicitation has been widely used to increase secondary metabolite production in plant in vitro cultures. This phenomenon involves the treatment of plant cultures with different agents (physical, chemical or biological) that triggers a defence response, which generally involves the production of secondary metabolites. Anthraquinones are secondary metabolites traditionally used as dyes that exhibit interesting therapeutic applications, such as antiviral (against hepatitis C virus), and as photosensitizers of cancer cells. In this chapter, we will present an approach for the establishment of hairy root cultures of Rubia tinctorum and a protocol for elicitation with methyl jasmonate. We will also discuss the possibility of combining elicitation with other strategies, such as in situ removal with Miglyol® 812.

Keywords

Anthraquinones Elicitation Hairy roots In situ removal Methyl jasmonate Miglyol® 812 Rubia tinctorum 

Notes

Acknowledgements

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014-3384 and PICT 2014-2118), Universidad de Buenos Aires (UBACyT Q298 2014-2017) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). MP, ABC, VDB, AMG, and JRT are researchers from CONICET. JC is a fellow from CONICET.

References

  1. Bányai P, Kuzovkina IN, Kursinszki L, Szoke É (2006) HPLC analysis of alizarin and Purpurin produced by Rubia tinctorum L. hairy root cultures. Chromatographia 63:S111–S114CrossRefGoogle Scholar
  2. Bóka K, Jakab J, Király I (2002) Comparison of the effect of different fungal elicitors on Rubia tinctorum L. suspension culture. Biol Plant 45(2):281–290.  https://doi.org/10.1023/A:1015113226897CrossRefGoogle Scholar
  3. Boldizsár I, Szűcs Z, Füzfai Z, Molnár-Perl I (2006) Identification and quantification of the constituents of madder root by gas chromatography and high-performance liquid chromatography. J Chromatogr A 1133(1):259–274.  https://doi.org/10.1016/j.chroma.2006.08.021CrossRefPubMedGoogle Scholar
  4. Cardillo AB, Rodriguez Talou J, Giulietti AM (2016) Establishment, culture, and scale-up of Brugmansia candida hairy roots for the production of tropane alkaloids. In: Mohan Jain S (ed) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, Methods in molecular biology, vol 1391. Humana Press, New York, pp 173–186Google Scholar
  5. Chashmi NA, Sharifi M, Yousefzadi M, Behmanesh M, Rezadoost H, Cardillo A, Palazon J (2013) Analysis of 6-methoxy podophyllotoxin and podophyllotoxin in hairy root cultures of Linum album Kotschy ex Boiss. Med Chem Res 22(2):745–752.  https://doi.org/10.1007/s00044-012-0067-1CrossRefGoogle Scholar
  6. Cuoco G, Mathe C, Archier P, Chemat F, Vieillescazes C (2009) A multivariate study of the performance of an ultrasound-assisted madder dyes extraction and characterization by liquid chromatography-photodiode array detection. Ultrason Sonochem 16(1):75–82.  https://doi.org/10.1016/j.ultsonch.2008.05.014CrossRefPubMedGoogle Scholar
  7. Derksen GCH, Niederländer HAG, van Beek TA (2002) Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array UV and mass spectrometric detection. J Chromatogr A 978(1–2):119–127.  https://doi.org/10.1016/S0021-9673(02)01412-7CrossRefPubMedGoogle Scholar
  8. Derksen GCH, Lelyveld GP, van Beek TA, Capelle A, de Groot Æ (2004) Two validated HPLC methods for the quantification of alizarin and other anthraquinones in Rubia tinctorum cultivars. Phytochem Anal 15(6):397–406.  https://doi.org/10.1002/pca.800CrossRefPubMedGoogle Scholar
  9. Duval J, Pecher V, Poujol M, Lesellier E (2016) Research advances for the extraction, analysis and uses of anthraquinones: a review. Ind Crop Prod 94:812–833.  https://doi.org/10.1016/j.indcrop.2016.09.056CrossRefGoogle Scholar
  10. Furuta A, Tsubuki M, Endoh M, Miyamoto T, Tanaka J, Abdus Salam K, Akimitsu N, Tani H, Yamashita A, Moriishi K, Nakakoshi M, Sekiguchi Y, Tsuneda S, Noda N (2015) Identification of hydroxyanthraquinones as novel inhibitors of hepatitis C virus NS3 helicase. Int J Mol Sci 16(8):18439–18453.  https://doi.org/10.3390/ijms160818439CrossRefPubMedPubMedCentralGoogle Scholar
  11. Goel MK, Mehrotra S, Kukreja AK (2011) Elicitor-induced cellular and molecular events are responsible for productivity enhancement in hairy root cultures: an insight study. Appl Biochem Biotechnol 165(5):1342–1355.  https://doi.org/10.1007/s12010-011-9351-7CrossRefPubMedGoogle Scholar
  12. Gorelick J, Bernstein N (2014) Chapter five – elicitation: an underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites. In: Sparks DL (ed) Advances in agronomy, vol 124. Academic Press, pp 201–230.  https://doi.org/10.1016/B978-0-12-800138-7.00005-X
  13. Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24(9):403–409.  https://doi.org/10.1016/j.tibtech.2006.07.002CrossRefPubMedGoogle Scholar
  14. Gülhan Ercan A, Taskin K, Turgut K, Yuce S (1999) Agrobacterium rhizogenes-mediated hairy root formation in some Rubia tinctorum L. populations grown in Turkey. Turk J Bot 23:373–378Google Scholar
  15. Han YS, Van der Heijden R, Verpoorte R (2001) Biosynthesis of anthraquinones in cell cultures of the Rubiaceae. Plant Cell Tissue Organ Cult 67(3):201–220.  https://doi.org/10.1023/A:1012758922713CrossRefGoogle Scholar
  16. Lajkó E, Bányai P, Zambó Z, Kursinszki L, Szőke E, Kőhidai L (2015) Targeted tumor therapy by Rubia tinctorum L.: analytical characterization of hydroxyanthraquinones and investigation of their selective cytotoxic, adhesion and migration modulator effects on melanoma cell lines (A2058 and HT168-M1). Cancer Cell Int 15:119.  https://doi.org/10.1186/s12935-015-0271-4CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lloyd G, McCown BH (1981) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427Google Scholar
  18. Malik S, Hossein Mirjalili M, Fett-Neto AG, Mazzafera P, Bonfill M (2013) Living between two worlds: two-phase culture systems for producing plant secondary metabolites. Crit Rev Biotechnol 33(1):1–22.  https://doi.org/10.3109/07388551.2012.659173CrossRefPubMedGoogle Scholar
  19. Orbán N, Boldizsár I, Szücs Z, Dános B (2008) Influence of different elicitors on the synthesis of anthraquinone derivatives in Rubia tinctorum L. cell suspension cultures. Dyes Pigments 77(1):249–257.  https://doi.org/10.1016/j.dyepig.2007.03.015CrossRefGoogle Scholar
  20. Perassolo M, Smith ME, Giulietti AM, Rodríguez Talou J (2016) Synergistic effect of methyl jasmonate and cyclodextrins on anthraquinone accumulation in cell suspension cultures of Morinda citrifolia and Rubia tinctorum. Plant Cell Tissue Organ Cult 124(2):319–330.  https://doi.org/10.1007/s11240-015-0896-yCrossRefGoogle Scholar
  21. Perassolo M, Cardillo AB, Mugas ML, Núñez Montoya SC, Giulietti AM, Rodríguez Talou J (2017) Enhancement of anthraquinone production and release by combination of culture medium selection and methyl jasmonate elicitation in hairy root cultures of Rubia tinctorum. Ind Crop Prod 105(Supplement C):124–132.  https://doi.org/10.1016/j.indcrop.2017.05.010CrossRefGoogle Scholar
  22. Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, Moyano E, Golenioswki M, Cusidó R, Palazon J (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21(2):182CrossRefPubMedPubMedCentralGoogle Scholar
  23. Rumie Vittar NB, Comini L, Fernadez IM, Agostini E, Núñez-Montoya S, Cabrera JL, Rivarola VA (2014) Photochemotherapy using natural anthraquinones: Rubiadin and Soranjidiol sensitize human cancer cell to die by apoptosis. Photodiagn Photodyn Ther 11(2):182–192.  https://doi.org/10.1016/j.pdpdt.2014.02.002CrossRefGoogle Scholar
  24. Sato K, Yamazaki T, Okuyama E, Yoshihira K, Shimomura K (1991) Anthraquinone production by transformed root cultures of Rubia tinctorum: influence of phytohormones and sucrose concentration. Phytochemistry 30(5):1507–1509.  https://doi.org/10.1016/0031-9422(91)84198-2CrossRefGoogle Scholar
  25. Schulte U, El-Shagi H, Zenk MH (1984) Optimization of 19 Rubiaceae species in cell culture for the production of anthraquinones. Plant Cell Rep 3(2):51–54.  https://doi.org/10.1007/BF00270970CrossRefPubMedGoogle Scholar
  26. Wang JW, Wu JY (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. In: Doran PM (ed) Biotechnology of hairy root systems. Springer, Berlin/Heidelberg, pp 55–89.  https://doi.org/10.1007/10_2013_183CrossRefGoogle Scholar
  27. Wang S, Zhong J, Kong D, Hu J, Li B, Gao W, Gai C, Zhuang C, Mao H (2011) Use of 9, 10-antraquinone compounds. USA Patent US20110224414A1Google Scholar
  28. Yue W, Ming Q-l, Lin B, Rahman K, Zheng C-J, Han T, Qin L-p (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high-yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36(2):215–232.  https://doi.org/10.3109/07388551.2014.923986CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • María Perassolo
    • 1
    • 2
    Email author
  • Alejandra B. Cardillo
    • 1
    • 2
  • Víctor D. Busto
    • 1
    • 2
  • Stéphanie Rivière
    • 1
  • Julieta Cerezo
    • 1
    • 2
  • Ana M. Giulietti
    • 2
  • Julián Rodríguez Talou
    • 1
    • 2
  1. 1.Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y GenéticaUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Facultad de Farmacia y BioquímicaCONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC)Buenos AiresArgentina

Personalised recommendations