Advertisement

Clifford+T-based Fault-Tolerant Quantum Implementation of Code Converter Circuit

  • Laxmidhar BiswalEmail author
  • Chandan Bandyopadhyay
  • Hafizur Rahaman
Conference paper
  • 3 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1154)

Abstract

Design of high-scalable quantum information processor (QIP) towards achieving quantum supremacy is still now in infancy due to catastrophic obstacles from decoherence. In way to address this problem, the use of quantum error correction code (QECC) and fault-tolerant circuit is highly enticieable, which further promises not only to protect extreme fragile quantum state from decoherence but also from other noises. It is seen that the fault-tolerant property can be achieved by the use of transversal primitive unitary operators. Here, we show the design of fault-tolerant implementation of BCD-to-Excess-3 and 2’s complement code converter which is pivotal in the design of high-scalable QIP. In this transformation process, first we transform the input circuit to an intermediate form where we obtain its NCV-based representation. In the second phase, this design is extensively used to form the fault-tolerant design. We also have compared our design with some of the existing works and have registered 39% improvement in design cost. In terms of T-count and T-depth metrics, our proposed designs also provide near-optimal solution.

Keywords

Clifford+T QECC Excess-3 2’s complement T-depth T-count 

References

  1. 1.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Statist. Comput. 26, 1484–1509 (1997)Google Scholar
  2. 2.
    Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)Google Scholar
  3. 3.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Develop. 5(3), 183–191 (1961)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8) (1965)Google Scholar
  5. 5.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Develop. 17(6), 525–532 (1973). https://doi.org/10.1147/rd.176.0525
  6. 6.
    Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507–531 (1986)Google Scholar
  7. 7.
  8. 8.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)CrossRefGoogle Scholar
  9. 9.
    DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771Google Scholar
  10. 10.
    Preskill, J.: Fault tolerant quantum computation. In: Lo, H.K., Popescu, S., Spiller, T. (eds.), Introduction to Quantum Computation and Information, Chap. 8, p. 213. World Scientific, River Edge, NJ (1998). https://arxiv.org/abs/quant-ph/9712048
  11. 11.
    Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012)Google Scholar
  12. 12.
    Fowler, A.G., Stephens, A.M., Groszkowski, P.: High threshold universal quantum computation on the surface code. Phys. Rev. A. 80, 052312 (2009)Google Scholar
  13. 13.
    Paetznick, A., Reichard, B.W.: Universal fault-tolerant quantum computation with only transver-sal gates and error correction. Phys. Rev. Lett. 111(9), 090505 (2013)Google Scholar
  14. 14.
    Jones, N.C., Whitfield, J.D., McMahon, P.L., Yung, M.H., Meter, R.V., Aspuru-Guzik, A., Yamamoto, Y.: Faster quantum chemistry simulation on fault-tolerant quantum computers. New. J. Phys. 14, 115023 (2012)Google Scholar
  15. 15.
  16. 16.
    Saravanan, M., Manic, K.S.: Energy efficient code converters using reversible logic gates. In: IEEE International Conference Green High Performance Computing (ICGHPC), pp. 1–6 (2013)Google Scholar
  17. 17.
    Thapliyal, H., Arabnia, H.R., Bajpai, R., Sharma, K.K.: Design of testable reversible sequential circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(7), 1201–1209 (2013)Google Scholar
  18. 18.
    Haghparast, M., Hajizadeh, M., Hajizadeh, R., Bashiri, R.: On the synthesis of different nanometric reversible converters. Middle-East J. Sci. Res. 7, 715–720 (2011)Google Scholar
  19. 19.
    Maity, H., Barik, A.K., Biswas, A., Bhattacharjee, A.K., Pal, A.: J. Circuit. Syst. Comput. 27, 1850184 (2018)Google Scholar
  20. 20.
    Maity, H., Biswas, A., Pal, A., Bhattacharjee, A.K.: Design of BCD to Excess-3 code converter circuit with optimized quantum cost, garbage output and constant input using reversible gate. Int. J. Quant. Inf. 16(07), 1850061 (2018)Google Scholar
  21. 21.
    Biswal, L., Das, R., Bandyopadhyay, C., Chattopadhyay, A., Rahaman, H.: A template-based technique for efficient Clifford+T-based quantum circuit implementation. Microelectron. J. 81, 58–68 (2018)Google Scholar
  22. 22.
    Shukla, V., Singh, O.P., Mishra, G.R., Tiwari, R.K.: Design of a 4-bit 2’s complement reversible circuit for arithmetic logic unit applications. In: Proceedings of International Conference in Communication Computing and Information Technology (ICCCMIT) Special Issue of International Journal of Computer Applications, pp. 1–5. Chennai, India (2012)Google Scholar
  23. 23.
    Gandhi, M., Devishree, J., Venkatesh, J., Sathish Mohan, S.: Design of reversible circuits for code converter and binary incrementer. J. Inf. Technol. Mech. Eng. (IJITME) 1, 24–33 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Laxmidhar Biswal
    • 1
    Email author
  • Chandan Bandyopadhyay
    • 2
  • Hafizur Rahaman
    • 1
  1. 1.School of VLSI TechnologyIIEST ShibpurHowrahIndia
  2. 2.Department of Information TechnologyIIEST ShibpurHowrahIndia

Personalised recommendations