Comparison of Photodetection Capability of Spin Coated TiO2 Thin Film and In2O3 Thin Film Devices

  • Rahul Raman
  • Amitabha Nath
  • Mitra Barun SarkarEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1154)


The fabrication of TiO2 thin film (TF) and In2O3 thin film (TF) separately using Spin Coating deposition technique and the analysis of their different characteristics like structural and optical properties has been reported in this paper and based upon the comparisons of these properties the superiority as a photodetector device of both the devices has been decided. The structural properties of both the prepared samples have been discussed and the FESEM characterization result confirms the Thin Film depositions. The UV-visible absorption characterization has been performed to reveal the optical properties of the fabricated samples in which the main band absorption was found at ~370 nm for TiO2 TF and ~274 nm for In2O3 TF structure. The Bandgap obtained for TiO2 TF was ~3.1 eV and that obtained for In2O3 TF was ~3.3 eV. This characterization result ensures the better performance of TiO2 TF as a photodetector as compared to In2O3 TF.


Photodetection Spin Coating deposition technique Structural and optical property Thin film Bandgap 



Authors are grateful to Dr. Ardhendu Saha for providing Optical Absorption Spectroscopy facility, Centre of Excellence of Advanced Material, NIT Durgapur for providing FESEM characterization and NIT Agartala for all kind of supports.


  1. 1.
    Sarkar, M.B., Mondal, A., Choudhuri, B., Mahajan, B., Chakrabartty, S., Ngangbam, C.: Enlarged broadband photodetection using indium doped TiO2 alloy thin film. J. Alloys Compd. 615, 440–445 (2014). Scholar
  2. 2.
    Roy, P., Kim, D., Lee, K., Spieckerb, E., Schmuki, P.: TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2, 45–59 (2010). Scholar
  3. 3.
    Garzella, C., Comini, E., Tempesti, E., Frigeri, C., Sberveglieri, G.: TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sens. Actuators B. Chem. 68(1–3), 189–196 (2000).
  4. 4.
    Toma, S.H., Toma, H.E.: Versatile electro chromic displays based on TiO2 nano porous films modified with triruthenium clusters. Electrochem. Commun. 8(10), 1628–1632 (2006).
  5. 5.
    Bradley, J.D.B., Evans, C.C., Parsy, F., Phillips, K.C., Senaratne, R., Marti, E., Mazur, E.: Low-loss TiO2 planar waveguides for nano photonic applications. In: 2010 IEEE Photinic Society’s 23rd Annual Meeting (2010).
  6. 6.
    Ibhadon, A., Fitzpatrick, P.: Heterogeneous Photocatalysis: recent advances and applications. Catalysts 3(1), 189–218 (2013). Scholar
  7. 7.
    Nakata, K., Fujishima, A.: TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13(3), 169–189 (2012). Scholar
  8. 8.
    Braun, J.H., Baidins, A., Marganski, R.E.: TiO2 pigment technology: a review. Prog. Org. Coat. 20(2), 105–138 (1992). Scholar
  9. 9.
    Shen, G.X., Chen, Y.C., Lin, C.J.: Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films 489(1–2), 130–136 (2005). Scholar
  10. 10.
    Lai, Y., Tang, Y., Gong, J., Gong, D., Chi, L., Lin, C., Chen, Z.: Transparent super hydrophobic/super hydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J. Mater. Chem. 22(15), 7420 (2012). Scholar
  11. 11.
    Welte, A., Waldauf, C., Brabec, C., Wellmann, P.J.: Application of optical absorbance for the investigation of electronic and structural properties of sol–gel processed TiO2 films. Thin Solid Films 516(20), 7256–7259 (2008). Scholar
  12. 12.
    Zhang, Z., Li, X.: Effect of TiO2-SiO2-SnOx sol-gel coating on the bonding strength of titanium-porcelain. Mater. Lett. 180, 288–290 (2016). Scholar
  13. 13.
    Lin, C.-C., Liao, J.-W., Li, W.-Y.: Resistive switching properties of TiO2 film for flexible non-volatile memory applications. Ceram. Int. 39, S733–S737 (2013). Scholar
  14. 14.
    Naoi, K., Ohko, Y., Tatsuma, T.: TiO2 films loaded with silver nanoparticles: control of multicolor photochromic behavior. J. Am. Chem. Soc. 126(11), 3664–3668 (2004). Scholar
  15. 15.
    Singh, S., Mahalingam, H., Singh, P.K.: Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl. Catal. A 462–463, 178–195 (2013). Scholar
  16. 16.
    Sarkar, M.B., Choudhuri, B., Bhattacharya, P., Barrman, R.N., Ghosh, A., diwedi, S., Dhar, M.M., chakrbartty, S., Mondal, A.: Improved UV photodetection by indium doped TiO2 thin film based photodetector. J. Nanosci. Nanotechnol. 18, 4898–4903 (2018).
  17. 17.
    Minami, T., Kumagai, H., Kakumu, T., Takata, S., Ishii, M.: Highly transparent and conductive ZnO–In2O3 thin films prepared by atmospheric pressure chemical vapor deposition. J. Vac. Sci. Technol. Vac. Surf. Films 15(3), 1069–1073 (1997). Scholar
  18. 18.
    Hong, J.-S., Rhee, B.-R., Kim, H.-M., Je, K.-C., Kang, Y.-J., Ahn, J.S.: Enhanced properties of In2O3–ZnO thin films deposited on soda lime glass due to barrier layers of SiO2 and TiO2. Thin Solid Films 467(1–2), 158–161 (2004). Scholar
  19. 19.
    Warmsingh, C., Yoshida, Y., Readey, D.W., Teplin, C.W., Perkins, J.D., Parilla, P.A., Ginley, D.S.: High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laser deposition. J. Appl. Phys. 95(7), 3831–3833 (2004). Scholar
  20. 20.
    Girtan, M.: The influence of post-annealing treatment on the electrical properties of In2O3 thin films prepared by an ultrasonic spray CVD process. Surf. Coat. Technol. 184(2–3), 219–224 (2004). Scholar
  21. 21.
    Gurlo, A., Ivanovskaya, M., Bârsan, N., Schweizer-Berberich, M., Weimar, U., Göpel, W., Diéguez, A.: Grain size control in nanocrystalline In2O3 semiconductor gas sensors. Sens. Actuators B. Chem. 44(1–3), 327–333 (1997). Scholar
  22. 22.
    Manifacier, J.-C., Szepessy, L., Bresse, J.F., Perotin, M., Stuck, R.: In2O3: (Sn) and SnO2: (F) films—application to solar energy conversion part II—electrical and optical properties. Mater. Res. Bull. 14(2), 163–175 (1979). Scholar
  23. 23.
    Willner, I., Katz, E.: Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew. Chem. Int. Ed. 39(7), 1180–1218 (2000).;2-eCrossRefGoogle Scholar
  24. 24.
    Kim, H., Horwitz, J.S., Kushto, G.P., Qadri, S.B., Kafafi, Z.H., Chrisey, D.B.: Transparent conducting Zr-doped In2O3 thin films for organic light-emitting diodes. Appl. Phys. Lett. 78(8), 1050–1052 (2001). Scholar
  25. 25.
    Attaf, A., Bouhdjar, A., Saidi, H., Benkhetta, Y., Bendjedidi, H., Nouadji, M., Lehraki, N.: Influence of growth time on crystalline structure, morphologic and optical properties of In2O3 thin films (2015).
  26. 26.
    Yi, J., He, X., Sun, Y., Li, Y.: Electron beam-physical vapor deposition of SiC/SiO2 high emissivity thin film. Appl. Surf. Sci. 253(9), 4361–4366 (2007). Scholar
  27. 27.
    Purica, M.: Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films 403–404, 485–488 (2002). Scholar
  28. 28.
    Rosental, A., Tarre, A., Gerst, A., Sundqvist, J., Hårsta, A., Aidla, A., Uustare, T.: Gas sensing properties of epitaxial SnO2 thin films prepared by atomic layer deposition. Sens. Actuators B. Chem. 93(1–3), 552–555 (2003). Scholar
  29. 29.
    Lee, W.G., Woo, S.I., Kim, J.C., Choi, S.H., Oh, K.H.: Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition. Thin Solid Films 237(1–2), 105–111 (1994). Scholar
  30. 30.
    Mahan, J.E., Vantomme, A., Langouche, G., Becker, J.P.: Semiconducting Mg2Si thin films prepared by molecular-beam epitaxy. Phys. Rev. B 54(23), 16965–16971 (1996). Scholar
  31. 31.
    Suda, Y., Kawasaki, H., Ueda, T., Ohshima, T.: Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453–454, 162–166 (2004). Scholar
  32. 32.
    Takeda, S., Suzuki, S., Odaka, H., Hosono, H.: Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering. Thin Solid Films 392(2), 338–344 (2001). Scholar
  33. 33.
    Perednis, D., Gauckler, L.J.: Thin film deposition using spray pyrolysis. J. Electroceram. 14(2), 103–111 (2005). Scholar
  34. 34.
    Singh, P., Kaushal, A., Kaur, D.: Mn-doped ZnO nanocrystalline thin films prepared by ultrasonic spray pyrolysis. J. Alloy. Compd. 471(1–2), 11–15 (2009). Scholar
  35. 35.
    Pal, B., Sharon, M.: Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol–gel process. Mater. Chem. Phys. 76(1), 82–87 (2002). Scholar
  36. 36.
    Ge, C., Xie, C., Cai, S.: Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating. Mater. Sci. Eng., B 137(1–3), 53–58 (2007). Scholar
  37. 37.
    Chung, W.-Y., Sakai, G., Shimanoe, K., Miura, N., Lee, D.-D., Yamazoe, N.: Preparation of indium oxide thin film by spin-coating method and its gas-sensing properties. Sens. Actuators B. Chem. 46(2), 139–145 (1998). Scholar
  38. 38.
    Chinnamuthu, P., Mondal, A., Singh, N.K., Dhar, J.C., Das, S.K., Chattopadhyay, K.K.: Structural and optical properties of glancing angle deposited TiO2 nanowires array. J. Nanosci. Nanotechnol. 12, 1–4 (2012). Scholar
  39. 39.
    Eagles, D.M.: Optical absorption and recombination radiation in semiconductors due to transitions between hydrogen-like acceptor impurity levels and the conduction band. J. Phys. Chem. Solids 16(1–2), 76–83 (1960). Scholar
  40. 40.
    Mondal, A., Shougaijam, B., Goswami, T., Dhar, J.C., Singh, N.K., Choudhury, S., Chattopadhay, K.K.: Structural and optical properties of glancing angle deposited In2O3 columnar arrays and Si/In2O3 photodetector. Appl. Phys. A. 115(1) (2014).

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rahul Raman
    • 1
  • Amitabha Nath
    • 1
  • Mitra Barun Sarkar
    • 1
    Email author
  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology AgartalaAgartalaIndia

Personalised recommendations