On Vector Variational Inequalities and Vector Optimization Problems

  • B. B. Upadhyay
  • Priyanka MishraEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1154)


This article deals with the relations among Minty and Stampacchia vector variational inequalities and vector optimization problems involving strongly convex functions of higher order. A numerical example has been given to justify the significance of these results. Moreover, we employ KKM–Fan theorem to establish the existence of the solutions for the considered Minty and Stampacchia vector variational inequalities.


Efficient minimizers KKM-Fan theorem Strongly convex functions 


  1. 1.
    Al-Homidan, S., Ansari, Q.H.: Generalized Minty vector variational-like inequalities and vector optimization problems. J. Optim. Theory Appl. 144(1), 1–11 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ansari, Q.H., Yao, J.C.: On nondifferentiable and nonconvex vector optimization problems. J. Optim. Theory Appl. 106(3), 475–488 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bhatia, G.: Optimality and mixed saddle point criteria in multiobjective optimization. J. Math. Anal. Appl. 342, 135–145 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cromme, L.: Strong uniqueness : A far-reaching criterion for the convergence of iterative numerical procedures. Numer. Math. 29, 179–193 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Deng, S.: On approximate solutions in convex vector optimization. SIAM J. Control Optim. 35, 2128–2136 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gao, Y., Hou, S.H., Yang, X.M.: Existence and optimality conditions for approximate solutions to vector optimization problems. J. Optim. Theory Appl. 152(1), 97–120 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Fan, L., Liu, S., Gao, S.: Generalized monotonicity and convexity of non-differentiable functions. J. Math. Anal. Appl. 279(1), 276–289 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gao, Y., Yang, X., Teo, K.L.: Optimality conditions for approximate solutions of vector optimization problems. J. Ind. Manage. Optim. 7(2), 483–496 (2011)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Giannessi, F.: On Minty variational principle. In: Giannessi, F., Komlósi, S., Rapcsack, T. (eds.) New Trends in Mathematical Programming, pp. 93–99 (1998)Google Scholar
  10. 10.
    Giannessi, F.: Theorems on the alternative quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186 (1980)Google Scholar
  11. 11.
    Giannessi, F.: Vector Variational Inequalities and Vector Equilibria. Mathematical Theories, Kluwer Academic, Dordrecht (2000)Google Scholar
  12. 12.
    Green, J., Heller, W.P.: Mathematical analysis and convexity with applications to economics. Handbook Math. Econ. 1, 15–52 (1981)zbMATHCrossRefGoogle Scholar
  13. 13.
    Gutiérrez, C., Jiménez, B., Novo, V.: On approximate efficiency in multiobjective programming. Math. Meth. OR 64, 165–185 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hartman, P., Stampacchia, G.: On some nonlinear elliptic differential functional equations. Acta Math. 115, 153–188 (1980)Google Scholar
  15. 15.
    Jiménez, B.: Strict efficiency in vector optimization. J. Math. Anal. Appl. 265(2), 264–284 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Karamardian, S., Schaible, S.: Seven kinds of monotone maps. J. Optim. Theory Appl. 66(1), 37–46 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kumar, P., Pant, M., Singh, H.P.: Solving nonlinear optimization problems using IUMDE algorithm. In Soft Computing: Theories and Applications, vol. 584, pp. 245–254. Springer, Singapore (2017)Google Scholar
  18. 18.
    Lee, G. M.: On relations between vector variational inequality and vector optimization problem. In: Yang, X.Q., Mees, A.I., Fisher, M.E., Jennings, L.S. (eds.) Progress in Optimization, II: Contributions from Australia, pp. 167–179 (2000)Google Scholar
  19. 19.
    Li, R., Yu, G.: A class of generalized invex functions and vector variational-like inequalities. J. Inequal. Appl. 2–14, (2017)Google Scholar
  20. 20.
    Lin, G.H., Fukushima, M.: Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints. J. Optim. Theory Appl. 118(1), 67–80 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Long, X.J., Peng, J.W., Wu, S.Y.: Generalized vector variational-like inequalities and nonsmooth vector optimization problems. Optimization 61(9), 1075–1086 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969)zbMATHGoogle Scholar
  23. 23.
    Minty, G.J.: On the generalization of a direct method of the calculus of variations. Bull. Amer. Math. Soc. 73, 314–321 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Mishra, S.K., Upadhyay, B.B.: Pseudolinear Functions and Optimization. Chapman and Hall, CRC Press (2015)Google Scholar
  25. 25.
    Mishra, S.K., Upadhyay, B.B.: Some relations between vector variational inequality problems and nonsmooth vector optimization problems using quasi efficiency. Positivity 17, 1071–1083 (2013)Google Scholar
  26. 26.
    Mishra, S.K., Wang, S.Y.: Vector variational-like inequalities and nonsmooth vector optimization problems. Nonlinear Anal. 1939–1945 (2006)Google Scholar
  27. 27.
    Rahtu, E., Salo, M., Heikkilä, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1501–1512 (2006)Google Scholar
  28. 28.
    Singh, T.P., Yadava, R.D.S.: Application of PSO clustering for selection of chemical interface materials for sensor array electronic nose. In: Soft Computing: Theories and Applications, vol. 583(1), pp. 449–456. Springer, Singapore (2017)Google Scholar
  29. 29.
    Smith, P.: Convexity Methods in Variational Calculus, vol. 1. Research Studies Press, Letchworth (1985)Google Scholar
  30. 30.
    Stampacchia, G.: Formes bilinearies coercitives sur les ensembles convexes. C.R. Acad. Sci. 9, 4413–4416 (1960)Google Scholar
  31. 31.
    Upadhyay, B.B., Mishra, P., Mohapatra, R.N., Mishra, S.K.: On the applications of nonsmooth vector optimization problems to solve generalized vector variational inequalities using convexificators. Adv. Intell. Syst. Comput. (2019).
  32. 32.
    Upadhyay, B.B., Mishra, P.: On generalized Minty and Stampacchia vector variational-like inequalities and nonsmooth vector optimization problem involving higher order strong invexity. J. Sci. Res. 182–191 (2020)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations