Advertisement

Cryopreservation of Marine Fish Sperm

  • Tian YongshengEmail author
  • Zhang Jingjing
  • Li Zhentong
  • Li Ziqi
  • Wang Linna
Chapter
  • 18 Downloads

Abstract

This paper reviews the progresses made in sperm cryopreservation of marine fish, including 40 species belonging to the genera Gadiformes, Salmoniformes, Perciformes, Pleuronectiformes, and Epinephelus. The factors that affect the efficiency of sperm cryopreservation mainly include formula of sperm diluent, type of antifreeze, and cryopreservation method. There are differences in the optimal formula of sperm diluent among species, various fish sperm diluents are prepared by the researchers using physiological salt, glucose, sucrose, and fetal bovine serum. The commonly used sperm diluents include Hanks, Ringer’s, MPRS, Ts-2, ELS-3, and MFs-3, and the data from past studies suggest that the sperm diluent plays a primary role in the survival of frozen sperm. Cryoprotectants can protect sperm from the freezing damage during the freezing process; dimethyl sulfoxide (DMSO) and 1,2-propylene glycol (PG) are the most commonly used cryoprotectants, they show the best effect at 8–15% concentration to cryopreserve sperm. The sperm cryopreservation methods include programmed cooling and the vitrification method. The research on sperm cryopreservation technology has effectively solved the industrial problems of reproductive isolation caused by the unsynchronized maturation of male and female gonads and geographical distribution in fish. Many countries, such as the United States, Canada, and China, have established various fish sperm cryobank. The cryopreserved sperm have been applied in gynogenesis induction in flatfish, hybrids breeding in grouper, and mass breeding of fish fry.

Keywords

Fish Marine Spermatozoa DMSO Cryobank 

Notes

Acknowledgments

Authors acknowledge the following projects: Key Research and Development Plan of Shandong (2019GHY112063), Superior Seed Project of Shandong (2019LZGC020), and Central Public-interest Scientific Institution Basal Research Fund, YSFRI, CAFS (NO. 20603022019002, 20603022017013).

References

  1. Ahn JY, Park JY, Lim HK (2018) Effects of different diluents, cryoprotective agents, and freezing rates on sperm cryopreservation in Epinephelus akaara. Cryobiology 83:60–64.  https://doi.org/10.1016/j.cryobiol.2018.06.003CrossRefPubMedGoogle Scholar
  2. Blaxter THS (1953) Sperm storage and cross-fertilization of spring and autumn spawning herring. Nature 172:1189–1190.  https://doi.org/10.1038/1721189b0CrossRefGoogle Scholar
  3. Butts IAE, Babiak I, Ciereszko A et al (2011) Semen characteristics and their ability to predict sperm cryopreservation potential of Atlantic cod, Gadus morhua L. Theriogenology 75:1290–1300.  https://doi.org/10.1016/j.theriogenology.2010.11.044CrossRefPubMedGoogle Scholar
  4. Butts IAE, Litvak MK, Kaspar V, Trippel EA (2010) Cryopreservation of Atlantic cod Gadus morhua L. spermatozoa: effects of extender composition and freezing rate on sperm motility, velocity and morphology. Cryobiology 61:174–181.  https://doi.org/10.1016/j.cryobiol.2010.07.001CrossRefPubMedGoogle Scholar
  5. Cabrita E, Engrola S, Conceicao LEC et al (2008) Successful cryopreservation of sperm from a sex-reversed dusky grouper, Epinephelus marginatus. Aquaculture 287:152–157.  https://doi.org/10.1016/j.aquaculture.2008.10.019CrossRefGoogle Scholar
  6. Cardiner RW (1978) Utilization of extracellular glucose by spermatozoa of two viviparous fishes. Comp Biochem Physiol 59A:165–168CrossRefGoogle Scholar
  7. Chen SL, Ji XS, Yu GC et al (2004) Cryopreservation of sperm from turbot (Scophthalmus maximus) and application to large-scale fertilization. Aquaculture 236:547–556.  https://doi.org/10.1016/j.aquaculture.2003.10.027CrossRefGoogle Scholar
  8. Chen SL, Tian YS, Li J et al (2007) Theory and techniques of fish spermatozoa and embryos cryopreservation. China Agriculture Press, BeijingGoogle Scholar
  9. Chen SL, Tian YS, Yang JF et al (2009) Artificial gynogenesis and sex determination in half-smooth tongue sole (Cynoglossus semilaevis). Mar Biotechnol 11:243–251.  https://doi.org/10.1007/s10126-008-9139-0CrossRefGoogle Scholar
  10. Chen YK, Liu QH, Li J et al (2010) Effect of long-term cryopreservation on physiological characteristics, antioxidant activities and lipid peroxidation of red seabream (Pagrus major) sperm. Cryobiology 61(2):189–193.  https://doi.org/10.1016/j.cryobiol.2010.07.003CrossRefPubMedGoogle Scholar
  11. Cuevas-Uribe R, Chesney EJ, Daly J et al (2013) Vitrification of sperm from marine fishes: effect on motility and membrane integrity. Aquac Res 46(7):1770–1784.  https://doi.org/10.1111/are.12337CrossRefPubMedCentralGoogle Scholar
  12. Cloud JG, Armstrong R, Wheeler P et al (2000) The northwest salmonid germplasm repository. In: Cryopreservation in aquatic species. World Aquaculture Society, Baton Rouge, pp 338–342Google Scholar
  13. Cuevas-Uribe R, Chesney EJ, Daly J, Tiersch TR (2015) Vitrification of sperm from marine fishes: effect on motility and membrane integrity. Aquac Res 46(7):1770–1784.  https://doi.org/10.1111/are.12337CrossRefPubMedGoogle Scholar
  14. Cuevas-Uribe R, Hu E, Daniels H et al (2017) Vitrification as an alternative approach for sperm cryopreservation in marine fishes. N Am J Aquac 79(2):187–196.  https://doi.org/10.1080/15222055.2017.1281855CrossRefPubMedPubMedCentralGoogle Scholar
  15. DeGraaf JD, Berlinsky DL (2004) Cryogenic and refrigerated storage of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) spermatozoa. Aquaculture 234:527–540.  https://doi.org/10.1016/j.aquaculture.2003.11.037CrossRefGoogle Scholar
  16. Ding F, Lall SP, Li J et al (2011) Cryopreservation of sperm from Atlantic halibut (Hippoglossus hippoglossus, L.) for commercial application. Cryobiology 63(1):56–60.  https://doi.org/10.1016/j.cryobiol.2011.04.009CrossRefPubMedGoogle Scholar
  17. Duan HM, Tian YS, Li WL et al (2017) Comparison of gynogenetic diploid and haploid embryonic development and hybridization of starry flounder Platichthys stellatusr. J Fish Sci China 24(3):477–487.  https://doi.org/10.3724/SP.J.1118.2017.16299CrossRefGoogle Scholar
  18. Erdahl AW, Graham EF (1987) Fertility of teleost semen as affected by dilution and storage in a seminal plasma-mimicking medium. Aquaculture 60(3–4):311–321.  https://doi.org/10.1016/0044-8486(87)90296-1CrossRefGoogle Scholar
  19. Eugenio-Gonzaliz MA, Padilla-Zarate G, Oca CMD, Paniagua-Chavez CG (2009) Information technologies supporting the operation of the germplasm bank of aquatic species of Baja California, Mexico. Rev Fish Sci 17(1):8–17.  https://doi.org/10.1080/10641260802008031CrossRefGoogle Scholar
  20. Figueroa E, Merino O, Risopatrón J et al (2015) Effect of seminal plasma on Atlantic salmon (Salmo salar) sperm vitrification. Theriogenology 83(2):238–245.  https://doi.org/10.1016/j.theriogenology.2014.09.015CrossRefPubMedGoogle Scholar
  21. Figueroa E, Valdebenito I, Merino O et al (2016) Cryopreservation of Atlantic salmon Salmo salar sperm: effects on sperm physiology. J Fish Biol 89(3):1537–1550.  https://doi.org/10.1111/jfb.13052CrossRefPubMedGoogle Scholar
  22. Glogowski J, Babiak I, Goryczko K et al (1996) Activity of aspartate amino transferase and acid phosphatase in cryopreserved trout sperm. Reprod Nutr Dev 8:1179–1184.  https://doi.org/10.1071/rd9961179CrossRefGoogle Scholar
  23. Gwo HH, Weng TS, Fan LS et al (2005) Development of cryopreservation procedures for semen of Pacific bluefin tuna Thunnus orientalis. Aquaculture 249:205–211.  https://doi.org/10.1016/j.aquaculture.2005.03.034CrossRefGoogle Scholar
  24. Gwo JC (1993) Cryopreservation of black grouper Epinephelus malabaricus spermatozoa. Theriogenology 39:1331–1342.  https://doi.org/10.1016/0093-691X(93)90235-WCrossRefGoogle Scholar
  25. Harvey B (2000) The application of cryopreservation on fish genetic conservation. In: Advances in world aquaculture. World Aquaculture Society, Baton Rouge, pp 332–337Google Scholar
  26. Holt WV (2000) Basic aspect of frozen storage of semen. Anim Reprod Sci 62(1–3):3–22.  https://doi.org/10.1016/S0378-4320(00)00152-4CrossRefPubMedGoogle Scholar
  27. Hua ZZ, Ren HS (1994) Cryogenic biomedical technology. Science Press, Beijing, pp 20–88Google Scholar
  28. Imaizumi H, Hotta T, Ohta H (2005) Cryopreservation of kelp grouper Epinephelus bruneus sperm and comparison of fertility of fresh and cryopreserved sperm. Aquat Sci 53:405–411.  https://doi.org/10.1111/j.1444-2906.2005.00985.xCrossRefGoogle Scholar
  29. Ji XS, Chena SL, Tiana YS et al (2004) Cryopreservation of sea perch (Lateolabrax japonicus) spermatozoa and feasibility for production-scale fertilization. Aquaculture 241:517–528.  https://doi.org/10.1016/j.aquaculture.2004.07.012CrossRefGoogle Scholar
  30. Jiang J, Tian YS, Wang B et al (2014) Cryopreservation of spermatozoa in starry flounder (Platichthys stellatus) and its analysis of the physiological characteristics. J Agric Biotechnol 22(1):17–26.  https://doi.org/10.3969/j.issn.1674-7968.2014.01.003CrossRefGoogle Scholar
  31. Ji XS, Chen SL, Zhao Y, Deng H (2005) Cryopreservation of stone flounder and Japanese flounder sperms and its application to the breeding. Mar Fish Res 26(1):13–17.  https://doi.org/10.3969/j.issn.1000-7075.2005.01.003CrossRefGoogle Scholar
  32. Jiang JH, Yan JQ, Zhu JQ et al (2011) Sperm cryopreservation and the cytoarchitecture damage detection of Pseudosciaena crocea. J Agric Biotechnol 19(4):725–733.  https://doi.org/10.3969/j.issn.1674-7968.2011.04.019CrossRefGoogle Scholar
  33. Kása E, Bernáth G, Kollár T et al (2017) Development of sperm vitrification protocols for freshwater fish (Eurasian perch, Perca fluviatilis) and marine fish (European eel, Anguilla anguilla). Gen Comp Endocrinol 245:102–107.  https://doi.org/10.1016/j.ygcen.2016.05.010CrossRefPubMedGoogle Scholar
  34. Kincaid HL (2000) Development of databases for germplasm repositories. World Aquaculture Society, Baton Rouge, pp 323–331Google Scholar
  35. Kiriyakit A, Gallardo WG, Bart AN (2011) Successful hybridization of groupers (Epinephelus coioides × Epinephelus lanceolatus) using cryopreserved sperm. Aquaculture 320:106–112.  https://doi.org/10.1016/j.aquaculture.2011.05.012CrossRefGoogle Scholar
  36. Koh ICC, Yokoi KI, Tsuji M et al (2010) Cryopreservation of sperm from seven-band grouper, Epinephelus septemfasciatus. Cryobiology 61(3):0–267.  https://doi.org/10.1016/j.cryobiol.2010.09.003CrossRefGoogle Scholar
  37. Lanes CFC, Okamoto M, Cavalcanti PV et al (2008) Cryopreservation of Brazilian flounder (Paralichthys orbignyanus) sperm. Aquaculture 275:361–365.  https://doi.org/10.1016/j.aquaculture.2007.12.025CrossRefGoogle Scholar
  38. Li GW, Zhen CY, Tang B (1998) Cryobiology. Hunan Science and Technology Press, Changsha, pp 55–100Google Scholar
  39. Li ZT, Tian YS, Tang J et al (2019) Growth characteristics and comparative analysis of Yunlong grouper with Epinephelus moara and Zhenzhulongdan grouper. J Fish China 43(4):1005–1017.  https://doi.org/10.19663/j.issn2095-9869.20180730001CrossRefGoogle Scholar
  40. Lim HK, Le MH (2013) Evaluation of extenders and cryoprotectants on motility and morphology of longtooth grouper (Epinephelus bruneus) sperm. Theriogenology 79:867–871.  https://doi.org/10.1016/j.theriogenology.2013.01.004CrossRefPubMedGoogle Scholar
  41. Liu L, Linhart O, Wei QW et al (2007b) Comparative study of activating mediums for the cryopreserved sperm of several sturgeons using CASA. J Fish China 31(6):711–720.  https://doi.org/10.3321/j.issn:1000-0615.2007.06.002CrossRefGoogle Scholar
  42. Liu QH, Li J, Zhang SC et al (2007a) Flow cytometry and ultrastructure of cryopreserved red seabream (Pagrus major) sperm. Theriogenology 67(6):1168–1174.  https://doi.org/10.1016/j.theriogenology.2006.12.013CrossRefPubMedGoogle Scholar
  43. Liu QH, Lu G, Che K et al (2011) Sperm cryopreservation of the endangered red spotted grouper, Epinephelus akaara, with a special emphasis on membrane lipids. Aquaculture 318:185–190.  https://doi.org/10.1016/j.aquaculture.2011.05.025CrossRefGoogle Scholar
  44. Liu QH, Ma DY, Xu SH et al (2015) Summer flounder (Paralichthys dentatus) sperm cryopreservation and application in interspecific hybridization with olive flounder (P olivaceus). Theriogenology 83(4):703–710.  https://doi.org/10.1016/j.theriogenology.2014.11.004CrossRefPubMedGoogle Scholar
  45. Liu QH, Xiao ZZ, Wang XY et al (2016) Sperm cryopreservation in different grouper subspecies and application in interspecific hybridization. Theriogenology 85:1399–1407.  https://doi.org/10.1016/j.theriogenology.2015.12.023CrossRefPubMedGoogle Scholar
  46. Lovelock JE, Polge C (1954) The immobilization of spermatozoa by freezing and thawing and the protective action of glycerol. Biochem J 58(4):618–622.  https://doi.org/10.1042/bj0580618CrossRefPubMedPubMedCentralGoogle Scholar
  47. Martínez-Páramo S, Diogo P, Dinis MT et al (2013) Effect of two sulfur-containing amino acids, taurine and hypotaurine in European sea bass (Dicentrarchus labrax) sperm cryopreservation. Cryobiology 66(3):333–338.  https://doi.org/10.1016/j.cryobiol.2013.04.001CrossRefPubMedGoogle Scholar
  48. Mounib MS (1978) Cryogenic preservation of fish and mammalian spermatozoa. J Reprod Fertil 53:13–18.  https://doi.org/10.1530/jrf.0.0530013CrossRefPubMedGoogle Scholar
  49. Oh SR, Lee CH, Kang HC et al (2013) Evaluation of fertilizing ability using frozen thawed sperm in the Longtooth grouper, Epinephelus bruneus. Dev Reprod 17(4):345–351.  https://doi.org/10.12717/DR.2013.17.4.345CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ohta H, Kawamura K, Unuma T et al (2001) Cryopreservation of the sperm of the Japanese bitterling. J Fish Biol 58:670–681.  https://doi.org/10.1111/j.1095-8649.2001.tb00521.xCrossRefGoogle Scholar
  51. Ohta H, Shimma H, Hirose K (1995) Relationship between fertilityand motility of cryopreserved spermatozoa of the amago salmon Oncorhynchus masou ishikawae. Fish Sci 61:886–887.  https://doi.org/10.2331/fishsci.61.886CrossRefGoogle Scholar
  52. Ott AG (1975) Cryopreservation of Pacific salmon and steelhead trout sperm. Oregon State University, DissertationGoogle Scholar
  53. Philpott M (1993) The dangers of disease transmission by artificial insemination and embryo transfer. Br Vet J 149:339–369.  https://doi.org/10.1016/S0007-1935(05)80075-2CrossRefPubMedGoogle Scholar
  54. Pullin RSV (1972) The storage of plaice (Pleuronectes platessa) sperm at low temperatures. Aquaculture 1:279–283.  https://doi.org/10.1016/0044-8486(72)90029-4CrossRefGoogle Scholar
  55. Qi WS, Jiang J, Tian YS et al (2014) Sperm cryopreservation of kelp grouper Epinephelus moara. Progress Fish Sci 35(1):26–33.  https://doi.org/10.3969/j.issn.1000-7075.2014.01.004CrossRefGoogle Scholar
  56. Rideout RM, Litvak MK, Trippel EA (2003) The development of a sperm cryopreservation protocol for winter flounder Pseudopleuronectes americanus (Walbaum): evaluation of cryoprotectants and diluents. Aquac Res 34(8):653–659.  https://doi.org/10.1046/j.1365-2109.2003.00879.xCrossRefGoogle Scholar
  57. Rideout RM, Trippel EA, Litvak MK (2004) The development of haddock and Atlantic cod sperm cryopreservation techniques and the effect of sperm age on cryopreservation success. J Fish Biol 65:299–311.  https://doi.org/10.1111/j.0022-1112.2004.00449.xCrossRefGoogle Scholar
  58. Sanches E, Oliveira I, Serralheiro P et al (2013) Cryopreservation of mutton snapper (Lutjanus analis) sperm. Ann Braz Acad Sci 85(3):1083–1091.  https://doi.org/10.1590/S0001-37652013005000047CrossRefGoogle Scholar
  59. Sanches E, Oliveira I, Serralheiro P et al (2015) Sperm cryopreservation of lane snapper Lutjanus synagris (Linnaeus, 1758). Braz J Biol 75(3):662–669.  https://doi.org/10.1590/1519-6984.20613CrossRefPubMedGoogle Scholar
  60. Sansone G, Fabbrocini A, Ieropoli S et al (2002) Effects of extender composition, cooling rate, and freezing on the motility of sea bass (Dicentrarchus labrax L.) spermatozoa after thawing. Cryobiology 44:229–239.  https://doi.org/10.1016/S0011-2240(02)00026-3CrossRefPubMedGoogle Scholar
  61. Seungki L, Goro Y (2016) Successful cryopreservation of spermatogonia in critically endangered Manchurian trout (Brachymystax lenok). Cryobiology 72:165–168.  https://doi.org/10.1016/j.cryobiol.2016.01.004CrossRefGoogle Scholar
  62. Song LN, Tian YS, Li XK et al (2016) Cryopreservation of marbled flounder (Pseudopleuronectes yokohamae) sperm and analysis of its physiological characteristics. J Agric Biotechnol 24(4):584–592.  https://doi.org/10.3969/j.issn.1674-7968.2016.04.013CrossRefGoogle Scholar
  63. Su PZ, Chen SL, Yang JF et al (2008) Induction of gynogenesis in Scophthalmus maximus by heterologous sperms of Lateolabrax japonicas. J Fish Sci China 15(5):715–721.  https://doi.org/10.3321/j.issn:1005-8737.2008.05.001CrossRefGoogle Scholar
  64. Tang J, Tian YS, Li ZT et al (2018) Analysis of genetic characters in Epinephelus moara, E lanceolaus and their hybrids. J Agric Biotechnol 26(5):819–829.  https://doi.org/10.3969/j.issn.1674-7968.2018.05.010CrossRefGoogle Scholar
  65. Tian YS, Chen SL, Ji XS et al (2008) Cryopreservation of spotted halibut (Verasper variegatus) sperm. Aquaculture 284(1–4):268–271.  https://doi.org/10.1016/j.aquaculture.2008.07.047CrossRefGoogle Scholar
  66. Tian YS, Chen SL, Liu BW, Wang B (2006) Embryonic and postembryonic development of hybrid produced with frozen sperms of Paralichthys dentatus and eggs of Paralichthys olivaceus. J Fish China 30(4):433–443.  https://doi.org/10.3321/j.issn:1000-0615.2006.04.001CrossRefGoogle Scholar
  67. Tian YS, Chen ZF, Duan HM et al (2017a) The family line establishment of the hybrid Epinephelus moara♀×E. lanceolatus by using cryopreserved sperm and the related genetic effect analysis. J Fish China 41(10):1–12.  https://doi.org/10.11964/jfc.20161210630CrossRefGoogle Scholar
  68. Tian YS, Duan HM, Li XK et al (2017b) Growth and genetic analysis among three homologous inbred strains of Paralichtys olivaceus. J Fish Sci China 24(1):11–21.  https://doi.org/10.3724/SP.J.1118.2017.16163CrossRefGoogle Scholar
  69. Tian YS, Chen SL, Ji XS et al (2009a) Cryopreservation of tongue sole Cynoglossus semilaevis sperm. Mar Fish Res 30(6):97–102.  https://doi.org/10.3969/j.issn.1000-7075.2009.06.013CrossRefGoogle Scholar
  70. Tian YS, Jiang J, Ma Y et al (2014) Spermatozoa cryopreservation of the burbot (Lota lota) from Irtysh river. J Agric Biotechnol 22(9):1149–1156.  https://doi.org/10.3969/j.issn.1674-7968.2014.09.012CrossRefGoogle Scholar
  71. Tian YS, Jiang J, Wang N et al (2015) Sperm of the giant grouper: cryopreservation, physiological and morphological analysis and application in hybridizations with red-spotted grouper. J Reprod Dev 61(4):333–339.  https://doi.org/10.1262/jrd.2014-087CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tian YS, Li XK, Duan HM et al (2016a) The family lines establishment and genetic effects analysis of the starry flounder Platichthys stellatus. Acta Oceanol Sin 38(6):21–31.  https://doi.org/10.3969/j.issn.0253-4193.2016.06.003CrossRefGoogle Scholar
  73. Tian YS, Ma Y, Xie ZN et al (2016b) Cryopreservation of Hucho taimen spermatozoa. J Agric Biotechnol 24(1):90–97.  https://doi.org/10.3969/j.issn.1674-7968.2016.01.012CrossRefGoogle Scholar
  74. Tian Y, Qi W, Jiang J et al (2013) Sperm cryopreservation of sex-reversed seven-band grouper, Epinephelus septemfasciatus. Anim Reprod Sci 137(3–4):230–236.  https://doi.org/10.1016/j.anireprosci.2013.01.014CrossRefPubMedGoogle Scholar
  75. Tian YS, Xu TJ, Chen SL et al (2009b) Parent effects and estimation of genetic parameters for three Japanese flounder breeding populations. Acta Oceanol Sinia 31(6):119–129.  https://doi.org/10.3321/j.issn:0253-4193.2009.06.013CrossRefGoogle Scholar
  76. Vuthiphandchai V, Chomphuthawach S, Nimrat S (2009) Cryopreservation of red snapper (Lutjanus argentimaculatus) sperm: effect of cryoprotectants and cooling rates on sperm motility, sperm viability, and fertilization capacity. Theriogenology 72(1):129–138.  https://doi.org/10.1016/j.theriogenology.2009.02.013CrossRefPubMedGoogle Scholar
  77. Wang LN, Tian YS, Tang J et al (2018) Analysis and quality evaluation of nutritional components in the muscle of Epinehelus moara, E. lanceolatus and hybrid “Yunlong grouper”. J Fish China 42(7):1085–1093.  https://doi.org/10.11964/jfc.20171011001CrossRefGoogle Scholar
  78. Withler FC, Lim LC (1982) Preliminary observations of chilled and deep-frozen storage of grouper Epinephelus tauvina sperm. Aquaculture 27:289–392.  https://doi.org/10.1016/0044-8486(82)90125-9CrossRefGoogle Scholar
  79. Yusoff M, Hassan BN, Ikhwanuddin M et al (2018) Successful sperm cryopreservation of the brown-marbled grouper, Epinephelus fuscoguttatus, using propylene glycol as cryoprotectant. Cryobiology 81:168–173.  https://doi.org/10.1016/j.cryobiol.2018.01.005CrossRefPubMedGoogle Scholar
  80. Yang H, Hu E, Buchanan JT, Tiersch TR (2018) A strategy for sperm cryopreservation of Atlantic salmon, Salmo salar, for remote commercial-scale high-throughput processing. J World Aquac Soc 49(1):96–112.  https://doi.org/10.1111/jwas.12431CrossRefPubMedGoogle Scholar
  81. Yang JF, Chen SL, Su PZ et al (2009) Study on gynogenesis induced by heterogenous sperms in flounder Verasper moseri. J Fish Sci China 33(3):372–379.  https://doi.org/10.3321/j.issn:1000-0615.2009.03.003CrossRefGoogle Scholar
  82. Yao Z, Crim LW, Richardson GF et al (2000) Motility, fertility and ultrastructural changes of ocean pout (Macrozoarces americanus L.) sperm after cryopreservation. Aquaculture 181:361–375.  https://doi.org/10.1016/s0044-8486(99)00240-9CrossRefGoogle Scholar
  83. Zhang YZ, Zhang SC, Liu XZ et al (2003) Cryopreservation of flounder (Paralichthys olivaceus) sperm with a practical methodology. Theriogenology 60:989–996.  https://doi.org/10.1016/s0093-691x(03)00097-9CrossRefPubMedGoogle Scholar
  84. Zilli L, Bianchi A, Sabbagh M et al (2018) Development of sea bream (Sparus aurata) semen vitrification protocols. Theriogenology 110:103–109.  https://doi.org/10.1016/j.theriogenology.2017.12.039CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Tian Yongsheng
    • 1
    • 2
    Email author
  • Zhang Jingjing
    • 1
    • 3
  • Li Zhentong
    • 1
    • 3
  • Li Ziqi
    • 1
    • 3
  • Wang Linna
    • 1
    • 2
  1. 1.Yellow Sea Fisheries Research InstituteChinese Academy of Fishery SciencesQingdaoChina
  2. 2.Laboratory for Marine Fisheries Science and Food Production ProcessesQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.College of Fisheries and Life ScienceShanghai Ocean UniversityShanghaiChina

Personalised recommendations