Advertisement

Establishing the Downscaling Model of NDVI Based on the Iterated Function System

  • Haijun LuanEmail author
  • Meng Zhang
  • Yunya Wan
  • Yuanrong He
  • Qin Nie
  • Xinxin Zhang
Conference paper
  • 22 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 657)

Abstract

The moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) product plays an important role in eco-environmental monitoring of natural disasters. However, its validation has long been an important scientific problem that has yet to be resolved. In this study, the downscaling model of NDVI was established based on the fractal Iterated Function System (IFS), and the MOD13 Q1 product was then validated based on the model. Xiamen was selected as the core study area, and utilizing the 30 m resolution Landsat 8 operational land imager (OLI) images as the validation data, the validation of MOD13 Q1 was implemented. The results showed the following. (1) The overall quality of the MOD13 Q1 product is good. While in the NDVI range of 0.2 to 0.6, the MOD13Q1 has an overestimation and the difference recognition of the NDVI is low, which should be paid attention to in practical applications; (2) The experiment proved that the fractal IFS was an effective methodology to establish downscaling models for RS land surface parameters such as NDVI. The inherent physical meaning and dynamic process expression advantages of this method make it have great application potential, which needs further digging.

Keywords

NDVI Downscaling Iterated Function System MOD13 Q1 OLI 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China “Coupling of NDVI’s up-scaling and downscaling fusing with ground objects classification” (No. 41601350), the Natural Science Foundation of Fujian Province, China “Research on NDVI’s scaling fusing with ground objects classification” (No. 2017J05069), and the “Scientific Research Climbing Plan” Project from Xiamen University of Technology “Spatial Distribution Estimation and Dynamic Monitoring of Soil Organic Matter Based on Multi-source and Heterogeneous Data” (No. XPDKT19010).

References

  1. 1.
    Huesca M, Litago J, Palaciosorueta A et al (2009) Assessment of forest fire seasonality using MODIS fire potential: a time series approach[J]. Agric For Meteorol 149(11):1946–1955CrossRefGoogle Scholar
  2. 2.
    Leon JR, Van Leeuwen WJ, Casady GM et al (2012) Using MODIS-NDVI for the modeling of post-wildfire vegetation response as a function of environmental conditions and pre-fire restoration treatments[J]. Remote Sens 4(3):598–621CrossRefGoogle Scholar
  3. 3.
    Zhang B, Zhang L, Xie D et al (2015) Application of synthetic NDVI time series blended from landsat and MODIS data for grassland biomass estimation[J]. Remote Sens 8(1):10CrossRefGoogle Scholar
  4. 4.
    Nestola E, Calfapietra C, Emmerton CA et al (2016) Monitoring grassland seasonal carbon dynamics, by integrating MODIS NDVI, proximal optical sampling, and Eddy covariance measurements[J]. Remote Sens 8(3):260CrossRefGoogle Scholar
  5. 5.
    Du L, Tian Q, Yu T et al (2013) A comprehensive drought monitoring method integrating MODIS and TRMM data[J]. Int J Appl Earth Obs Geoinf 23(1):245–253CrossRefGoogle Scholar
  6. 6.
    Kim Y (2013) Drought and elevation effects on MODIS vegetation indices in northern Arizona ecosystems[J]. Int J Remote Sens 34(14):4889–4899CrossRefGoogle Scholar
  7. 7.
    Veron SR, Paruelo JM (2010) Desertification alters the response of vegetation to changes in precipitation[J]. J Appl Ecol 47(6):1233–1241CrossRefGoogle Scholar
  8. 8.
    Gao X, Huete AR, Didan K et al (2003) Multisensor comparisons and validation of MODIS vegetation indices at the semiarid Jornada experimental range[J]. IEEE Trans Geosci Remote Sens 41(10):2368–2381CrossRefGoogle Scholar
  9. 9.
    Fensholt R, Sandholt I, Stisen S et al (2006) Evaluating MODIS, MERIS, and VEGETATION vegetation indices using in situ measurements in a semiarid environment[J]. IEEE Trans Geosci Remote Sens 44(7):1774–1786CrossRefGoogle Scholar
  10. 10.
    Geng L, Ma M, Yu W et al (2014) Validation of the MODIS NDVI products in different land-use types using in situ measurements in the Heihe River Basin[J]. IEEE Geosci Remote Sens Lett 11(9):1649–1653CrossRefGoogle Scholar
  11. 11.
    Liang S (2009) Quantitative Remote sensing[M]. (trans: Fan WJ). Science Press, Beijing 180–183. (in Chinese)Google Scholar
  12. 12.
    Gao F, Masek J, Schwaller M et al (2006) On the blending of the landsat and MODIS surface reflectance: predicting daily landsat surface reflectance[J]. IEEE Trans Geosci Remote Sens 44(8):2207–2218CrossRefGoogle Scholar
  13. 13.
    Zhu XL, Chen JM, Gao F et al (2010) An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sens Environ 114(11):2610–2623CrossRefGoogle Scholar
  14. 14.
    Huang B, Zhang HK, Song HH et al (2013) Unified fusion of remote sensing imagery: generating simultaneously high-resolution synthetic spatial-temporal spectral earth observations[J]. Remote Sens Lett 4:561–569CrossRefGoogle Scholar
  15. 15.
    Huang B, Zhang HK (2014) Spatio-temporal reflectance fusion via unmixing: accounting for both phenological and land-cover changes[J]. Int J Remote Sens 35(16):6213–6233CrossRefGoogle Scholar
  16. 16.
    Wang Q, Shi W, Wang L (2014) Allocating classes for soft-then-hard subpixel mapping algorithms in units of class[J]. IEEE Trans Geosci Remote Sens 52(5):2940–2959CrossRefGoogle Scholar
  17. 17.
    Wang Q, Shi W, Atkinson PM et al (2015) Downscaling MODIS images with area-to-point regression kriging[J]. Remote Sens Environ 166:191–204CrossRefGoogle Scholar
  18. 18.
    Wang Q, Atkinson PM, Shi W (2015) Indicator cokriging-based subpixel mapping without prior spatial structure information[J]. IEEE Trans Geosci Remote Sens 53(1):309–323CrossRefGoogle Scholar
  19. 19.
    Wang Q, Atkinson PM, Shi W (2015) Fast sub-pixel mapping algorithms for sub-pixel resolution change detection[J]. IEEE Trans Geosci Remote Sens 53(4):1692–1706CrossRefGoogle Scholar
  20. 20.
    Shi W, Wang Q (2015) Soft-then-hard sub-pixel mapping with multiple shifted images[J]. Int J Remote Sens 36(5):1329–1348CrossRefGoogle Scholar
  21. 21.
    Zhang RH, Tian J, Li ZL et al (2008) Spatial scaling and information fractal dimension of surface parameters used in quantitative remote sensing[J]. Int J Remote Sens 29:5145–5159CrossRefGoogle Scholar
  22. 22.
    Zhang RH, Tian J, Li ZL et al (2010) Principles and methods for the validation of quantitative remote sensingproducts[J]. Sci China Earth Sci 53:741–751CrossRefGoogle Scholar
  23. 23.
    Luan HJ, Tian QJ, Gu XF et al (2013) Establishing continuous scaling of NDVI based on fractal theory and GEOEYE-1 image[J]. J Infrared Millimeter Waves 32(6): 538–544, 549. (in Chinese)Google Scholar
  24. 24.
    Luan HJ, Tian QJ, Yu T et al (2015) Establishing continuous spatial scaling model of NDVI on fractal theory and five-index estimation system[J]. J Remote Sens 19(1):116–125 (in Chinese)Google Scholar
  25. 25.
    Wu L, Qin Q, Liu X et al (2016) Spatial up-scaling correction for leaf area index based on the fractal theory[J]. Remote Sens 8(3):197CrossRefGoogle Scholar
  26. 26.
    Kim G, Barros AP (2002) Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data[J]. Remote Sens Environ 83:400–413CrossRefGoogle Scholar
  27. 27.
    Chen Y, Chen L (2005) Fractal geometry, 2nd edn [M]. Earthquake Press, Beijing, pp 95–98, 49-51. (in Chinese)Google Scholar
  28. 28.
    Xie HP, Sun HQ (1997) The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces[J]. Fractals 5(4):625–634MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wen JG, Liu Q, Liu QH et al (2009) Scale effect and scale correction of land-surface albedo in rugged terrain[J]. Int J Remote Sens 30(20):5397–5420CrossRefGoogle Scholar
  30. 30.
    Luan H, Chen R, Zhang X et al (2017) Bidirectional reflectance distribution function estimation of typical ground objects in Xiamen and its availability in validation of normalized-difference vegetation index[C]. Int Congr Image Signal Process IEEE 625–631. (Datong)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Haijun Luan
    • 1
    • 2
    Email author
  • Meng Zhang
    • 1
  • Yunya Wan
    • 1
  • Yuanrong He
    • 1
    • 2
  • Qin Nie
    • 1
  • Xinxin Zhang
    • 1
    • 2
  1. 1.College of Computer and Information EngineeringXiamen University of TechnologyXiamenChina
  2. 2.Digital Fujian Institute of Big Data for Natural Hazards Monitoring, Xiamen University of TechnologyXiamenChina

Personalised recommendations