Advertisement

OPLL pp 61-64 | Cite as

Overview of Possible Roles of OPLL-Associated Genes in OPLL Development

  • Taku SaitoEmail author
Chapter
  • 17 Downloads

Abstract

In addition to classical genomic studies, a genome-wide association study for ossification of the posterior longitudinal ligament (OPLL) was performed and susceptibility loci and candidate genes were identified. Among them, R-spondin 2 (RSPO2) has been focused on as a potent candidate. RSPO2 is a member of the R-spondin secreted protein family and enhances canonical Wnt signaling activity. A recent study showed that RSPO2 suppresses the early-stage differentiation of chondrocytes and that its expression is significantly lower in fibroblasts carrying the risk allele. These findings suggest that RSPO2 may suppress the differentiation of mesenchymal stem cells toward chondrocytes via the inhibition of canonical Wnt signaling. To obtain a deeper understanding of the pathophysiology of OPLL, appropriate experimental animal models and expression analyses of candidate genes in surgical specimens from OPLL patients are necessary.

Keywords

Ossification of the posterior longitudinal ligament (OPLL) Genome-wide association study (GWAS) Susceptibility gene 

Notes

Acknowledgments

I thank Edanz (www.edanzediting.co.jp) for editing the English text of the draft of this manuscript.

References

  1. 1.
    Koga H, Hayashi K, Taketomi E, Matsunaga S, Yashiki S, Fujiyoshi T, et al. Restriction fragment length polymorphism of genes of the alpha 2(XI) collagen, bone morphogenetic protein-2, alkaline phosphatase, and tumor necrosis factor-alpha among patients with ossification of posterior longitudinal ligament and controls from the Japanese population. Spine (Phila Pa 1976). 1996;21(4):469–73.Google Scholar
  2. 2.
    Numasawa T, Koga H, Ueyama K, Maeda S, Sakou T, Harata S, et al. Human retinoic X receptor beta: complete genomic sequence and mutation search for ossification of posterior longitudinal ligament of the spine. J Bone Miner Res. 1999;14(4):500–8.PubMedGoogle Scholar
  3. 3.
    Nakamura I, Ikegawa S, Okawa A, Okuda S, Koshizuka Y, Kawaguchi H, et al. Association of the human NPPS gene with ossification of the posterior longitudinal ligament of the spine (OPLL). Hum Genet. 1999;104(6):492–7.PubMedGoogle Scholar
  4. 4.
    Kamiya M, Harada A, Mizuno M, Iwata H, Yamada Y. Association between a polymorphism of the transforming growth factor-beta1 gene and genetic susceptibility to ossification of the posterior longitudinal ligament in Japanese patients. Spine (Phila Pa 1976). 2001;26(11):1264–6. discussion 6–7.Google Scholar
  5. 5.
    Ogata N, Koshizuka Y, Miura T, Iwasaki M, Hosoi T, Shiraki M, et al. Association of bone metabolism regulatory factor gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity. Spine (Phila Pa 1976). 2002;27(16):1765–71.Google Scholar
  6. 6.
    Tanaka T, Ikari K, Furushima K, Okada A, Tanaka H, Furukawa K, et al. Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet. 2003;73(4):812–22.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Horikoshi T, Maeda K, Kawaguchi Y, Chiba K, Mori K, Koshizuka Y, et al. A large-scale genetic association study of ossification of the posterior longitudinal ligament of the spine. Hum Genet. 2006;119(6):611–6.PubMedGoogle Scholar
  8. 8.
    Wang H, Liu D, Yang Z, Tian B, Li J, Meng X, et al. Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients. Eur Spine J. 2008;17(7):956–64.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kobashi G, Ohta K, Washio M, Okamoto K, Sasaki S, Yokoyama T, et al. FokI variant of vitamin D receptor gene and factors related to atherosclerosis associated with ossification of the posterior longitudinal ligament of the spine: a multi-hospital case-control study. Spine (Phila Pa 1976). 2008;33(16):E553–8.Google Scholar
  10. 10.
    Liu Y, Zhao Y, Chen Y, Shi G, Yuan W. RUNX2 polymorphisms associated with OPLL and OLF in the Han population. Clin Orthop Relat Res. 2010;468(12):3333–41.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kim DH, Jeong YS, Chon J, Yoo SD, Kim HS, Kang SW, et al. Association between interleukin 15 receptor, alpha (IL15RA) polymorphism and Korean patients with ossification of the posterior longitudinal ligament. Cytokine. 2011;55(3):343–6.PubMedGoogle Scholar
  12. 12.
    Ren Y, Liu ZZ, Feng J, Wan H, Li JH, Wang H, et al. Association of a BMP9 haplotype with ossification of the posterior longitudinal ligament (OPLL) in a Chinese population. PLoS One. 2012;7(7):e40587.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Nakajima M, Takahashi A, Tsuji T, Karasugi T, Baba H, Uchida K, et al. A genome-wide association study identifies susceptibility loci for ossification of the posterior longitudinal ligament of the spine. Nat Genet. 2014;46(9):1012–6.PubMedGoogle Scholar
  14. 14.
    Ikegawa S. Genomic study of ossification of the posterior longitudinal ligament of the spine. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90(10):405–12.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Ono K, Yonenobu K, Miyamoto S, Okada K. Pathology of ossification of the posterior longitudinal ligament and ligamentum flavum. Clin Orthop Relat Res. 1999;(359):18–26.Google Scholar
  16. 16.
    de Lau WB, Snel B, Clevers HC. The R-spondin protein family. Genome Biol. 2012;13(3):242.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kazanskaya O, Glinka A, del Barco BI, Stannek P, Niehrs C, Wu W. R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis. Dev Cell. 2004;7(4):525–34.PubMedGoogle Scholar
  18. 18.
    Kim KA, Wagle M, Tran K, Zhan X, Dixon MA, Liu S, et al. R-Spondin family members regulate the Wnt pathway by a common mechanism. Mol Biol Cell. 2008;19(6):2588–96.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Day TF, Guo X, Garrett-Beal L, Yang Y. Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell. 2005;8(5):739–50.PubMedGoogle Scholar
  20. 20.
    Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C. Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell. 2005;8(5):727–38.PubMedGoogle Scholar
  21. 21.
    Tamamura Y, Otani T, Kanatani N, Koyama E, Kitagaki J, Komori T, et al. Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem. 2005;280(19):19185–95.PubMedGoogle Scholar
  22. 22.
    Nam JS, Turcotte TJ, Yoon JK. Dynamic expression of R-spondin family genes in mouse development. Gene Expr Patterns. 2007;7(3):306–12.PubMedGoogle Scholar
  23. 23.
    Yamada W, Nagao K, Horikoshi K, Fujikura A, Ikeda E, Inagaki Y, et al. Craniofacial malformation in R-spondin2 knockout mice. Biochem Biophys Res Commun. 2009;381(3):453–8.PubMedGoogle Scholar
  24. 24.
    Aoki M, Kiyonari H, Nakamura H, Okamoto H. R-spondin2 expression in the apical ectodermal ridge is essential for outgrowth and patterning in mouse limb development. Develop Growth Differ. 2008;50(2):85–95.Google Scholar
  25. 25.
    Friedman MS, Oyserman SM, Hankenson KD. Wnt11 promotes osteoblast maturation and mineralization through R-spondin 2. J Biol Chem. 2009;284(21):14117–25.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Takegami Y, Ohkawara B, Ito M, Masuda A, Nakashima H, Ishiguro N, et al. R-spondin 2 facilitates differentiation of proliferating chondrocytes into hypertrophic chondrocytes by enhancing Wnt/beta-catenin signaling in endochondral ossification. Biochem Biophys Res Commun. 2016;473(1):255–64.PubMedGoogle Scholar
  27. 27.
    Nakajima M, Kou I, Ohashi H, Ikegawa S. Identification and functional characterization of RSPO2 as a susceptibility gene for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet. 2016;99(1):202–7.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhang H, Lin C, Zeng C, Wang Z, Wang H, Lu J, et al. Synovial macrophage M1 polarisation exacerbates experimental osteoarthritis partially through R-spondin-2. Ann Rheum Dis. 2018;77(10):1524–34.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Sensory and Motor System Medicine, Faculty of MedicineThe University of TokyoTokyoJapan

Personalised recommendations