Advertisement

OPLL pp 89-97 | Cite as

Metabolomics Analysis of OPLL Patients

  • Takashi Tsuji
  • Morio Matsumoto
Chapter
  • 27 Downloads

Abstract

Metabolomics is one of the “omics” technologies and is a comprehensive analysis of small molecule metabolites. The metabolomics is located at the downstream end of “omics” research; therefore, this research platform is most closely related to phenotype among other “omics” research. Recently, we compared the differences of metabolite profiling between patients with ossification of the posterior longitudinal ligament (OPLL) and control subjects for the first time and detected 259 metabolites. Among the 259 metabolites, some metabolites were significantly larger in OPLL group, even in analyses excluding patients with diabetes mellitus and hyperlipidemia. Although this research field is still in development, these results of the present study could lead to new insights into clarifying the molecular pathomechanisms of OPLL.

Keywords

Metabolomics Metabolite Comprehensive analysis Ossification of the posterior longitudinal ligament Genomics Transcriptomics Proteomics 

References

  1. 1.
    Resnick D, Shaul SR, Robins JM. Diffuse idiopathic skeletal hyperostosis (DISH): Forestier’s disease with extraspinal manifestations. Radiology. 1975;115(3):513–24.PubMedGoogle Scholar
  2. 2.
    Nakajima M, Takahashi A, Tsuji T, Karasugi T, Baba H, Uchida K, Kawabata S, Okawa A, Shindo S, Takeuchi K, Taniguchi Y, Maeda S, Kashii M, Seichi A, Nakajima H, Kawaguchi Y, Fujibayashi S, Takahata M, Tanaka T, Watanabe K, Kida K, Kanchiku T, Ito Z, Mori K, Kaito T, Kobayashi S, Yamada K, Takahashi M, Chiba K, Matsumoto M, Furukawa K, Kubo M, Toyama Y, Genetic Study Group of Investigation Committee on Ossification of the Spinal Ligaments, Ikegawa S. A genome-wide association study identifies susceptibility loci for ossification of the posterior longitudinal ligament of the spine. Nat Genet. 2014;46(9):1012–6.PubMedGoogle Scholar
  3. 3.
    Shingyouchi Y, Nagahama A, Niida M. Ligamentous ossification of the cervical spine in the late middle-aged Japanese men. Its relation to body mass index and glucose metabolism. Spine (Phila Pa 1976). 1996;21(21):2474–8.Google Scholar
  4. 4.
    Wang PN, Chen SS, Liu HC, Fuh JL, Kuo BI, Wang SJ. Ossification of the posterior longitudinal ligament of the spine. A case-control risk factor study. Spine (Phila Pa 1976). 1999;24(2):142–4; discussion 145.Google Scholar
  5. 5.
    Rochfort S. Metabolomics reviewed: a new “omics” platform technology for systems biology and implications for natural products research. J Nat Prod. 2005;68(12):1813–20.PubMedGoogle Scholar
  6. 6.
    Newgard CB. Metabolomics and metabolic diseases: where do we stand? Cell Metab. 2017;25(1):43–56.Google Scholar
  7. 7.
    Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J Proteome Res. 2003;2(5):488–94.PubMedGoogle Scholar
  8. 8.
    Ooga T, Sato H, Nagashima A, Sasaki K, Tomita M, Soga T, Ohashi Y. Metabolomic anatomy of an animal model revealing homeostatic imbalances in dyslipidaemia. Mol Biosyst. 2011;7(4):1217–23.PubMedGoogle Scholar
  9. 9.
    Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6(1):78–95.PubMedGoogle Scholar
  10. 10.
    Tsuji T, Matsumoto M, Nakamura M, Miyamoto T, Yagi M, Fujita N, Okada E, Nagoshi N, Tsuji O, Watanabe K. Metabolite profiling of plasma in patients with ossification of the posterior longitudinal ligament. J Orthop Sci. 2018;23(6):878–83.PubMedGoogle Scholar
  11. 11.
    Inamasu J, Guiot BH, Sachs DC. Ossification of the posterior longitudinal ligament: an update on its biology, epidemiology, and natural history. Neurosurgery. 2006;58(6):1027–39; discussion 1027–39.PubMedGoogle Scholar
  12. 12.
    Ikeda Y, Nakajima A, Aiba A, Koda M, Okawa A, Takahashi K, Yamazaki M. Association between serum leptin and bone metabolic markers, and the development of heterotopic ossification of the spinal ligament in female patients with ossification of the posterior longitudinal ligament. Eur Spine J. 2011;20(9):1450–8.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Watkins BA, Lippman HE, Le Bouteiller L, Li Y, Seifert MF. Bioactive fatty acids: role in bone biology and bone cell function. Prog Lipid Res. 2001;40(1–2):125–48.PubMedGoogle Scholar
  14. 14.
    Watkins BA, Li Y, Lippman HE, Feng S. Modulatory effect of omega-3 polyunsaturated fatty acids on osteoblast function and bone metabolism. Prostaglandins Leukot Essent Fatty Acids. 2003;68(6):387–98.PubMedGoogle Scholar
  15. 15.
    Shen CL, Peterson J, Tatum OL, Dunn DM. Effect of long-chain n-3 polyunsaturated fatty acid on inflammation mediators during osteoblastogenesis. J Med Food. 2008;11(1):105–10.PubMedGoogle Scholar
  16. 16.
    Lin G, Wang H, Dai J, Li X, Guan M, Gao S, Ding Q, Wang H, Fang H. Conjugated linoleic acid prevents age-induced bone loss in mice by regulating both osteoblastogenesis and adipogenesis. Biochem Biophys Res Commun. 2017;490(3):813–20.PubMedGoogle Scholar
  17. 17.
    Ahn SH, Park SY, Baek JE, Lee SY, Baek WY, Lee SY, Lee YS, Yoo HJ, Kim H, Lee SH, Im DS, Lee SK, Kim BJ, Koh JM. Free fatty acid receptor 4 (GPR120) stimulates bone formation and suppresses bone resorption in the presence of elevated n-3 fatty acid levels. Endocrinology. 2016;157(7):2621–35.PubMedGoogle Scholar
  18. 18.
    Candelario J, Tavakoli H, Chachisvilis M. PTH1 receptor is involved in mediating cellular response to long-chain polyunsaturated fatty acids. PLoS One. 2012;7(12):e52583.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Cheng S, Xing W, Pourteymoor S, Mohan S. Effects of thyroxine (T4), 3,5,3′-triiodo-L-thyronine (T3) and their metabolites on osteoblast differentiation. Calcif Tissue Int. 2016;99(4):435–42.PubMedGoogle Scholar
  20. 20.
    Park SH, Lee J, Kang MA, Moon YJ, Wang SI, Kim KM, Park BH, Jang KY, Kim JR. Potential of l-thyroxine to differentiate osteoblast-like cells via angiopoietin1. Biochem Biophys Res Commun. 2016;478(3):1409–15.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Takashi Tsuji
    • 1
    • 2
  • Morio Matsumoto
    • 1
  1. 1.Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
  2. 2.Department of Orthopaedic SurgeryTokyo Medical CenterTokyoJapan

Personalised recommendations