Advertisement

ECG Interpretation with Deep Learning

  • Wenjie CaiEmail author
  • Danqin Hu
Chapter
  • 29 Downloads

Abstract

Electrocardiography (ECG), which can trace the electrical activity of the heart noninvasively, is widely used to assess heart health. Accurate interpretation of ECG requires significant amounts of education and training. With the application of deep learning, the accuracy of ECG diagnostic analysis has reached a new high level and even outperforms that of individual cardiologists. And the automated ECG diagnostic model makes it possible for analyzing ECG signals from wearable devices in real time. The common deep learning networks for analyzing ECG are mainly based on convolutional neural networks (CNN), recurrent neural networks (RNN), CNN plus RNN, and some other architectures. This chapter gives a systematical review on the CNN-based, RNN-based, as well as CNN and RNN-based intelligent analysis models for the automated ECG interpretation.

Keywords

Convolutional neural network Recurrent neural network Electrocardiography interpretation 

References

  1. 1.
    Rautaharju, P.M.: Eyewitness to history: landmarks in the development of computerized electrocardiography. J. Electrocardiol. 49, 1–6 (2016)CrossRefGoogle Scholar
  2. 2.
    Guglin, M.E., Thatai, D.: Common errors in computer electrocardiogram interpretation. Int. J. Cardiol. 106, 232–237 (2006)CrossRefGoogle Scholar
  3. 3.
    Smulyan, H.: The computerized ECG: friend and foe. Am. J. Med. 132, 153–160 (2019)CrossRefGoogle Scholar
  4. 4.
    Berkaya, S.K., Uysal, A.K., Gunal, E.S., Ergin, S., Gunal, S., Gulmezoglu, M.B.: A survey on ECG analysis. Biomed. Signal Process. Control. 43, 216–235 (2018)CrossRefGoogle Scholar
  5. 5.
    Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19, 1236–1246 (2018)CrossRefGoogle Scholar
  6. 6.
    Tan, J.H., Hagiwara, Y., Pang, W., Lim, I., Oh, S.L., Adam, M., Tan, R.S., Chen, M., Acharya, U.R.: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput. Biol. Med. 94, 19–26 (2018)CrossRefGoogle Scholar
  7. 7.
    Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., Tan, R.S.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)CrossRefGoogle Scholar
  8. 8.
    Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 101, E215 (2000)PubMedGoogle Scholar
  9. 9.
    Acharya, U.R., Fujita, H., Lih, O.S., Hagiwara, Y., Tan, J.H., Adam, M.: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 405, 81–90 (2017)CrossRefGoogle Scholar
  10. 10.
    Yıldırım, Ö., Pławiak, P., Tan, R.S., Acharya, U.R.: Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 102, 411–420 (2018)CrossRefGoogle Scholar
  11. 11.
    Clifford, G.D., Liu, C.Y., Moody, B., Silva, I., Li, Q., Johnson, A., Mark, R.: AF classification from a short single lead ECG recording: the PhysioNet/computing in cardiology challenge. Comput. Cardiol. 44, 469 (2017)Google Scholar
  12. 12.
    Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P., Ng, A.Y.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019)CrossRefGoogle Scholar
  13. 13.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv:1512.03385 (2015)Google Scholar
  14. 14.
    Ji, Y., Zhang, S., Xiao, W.: Electrocardiogram classification based on faster regions with convolutional neural network. Sensors. 19, 2558 (2019)CrossRefGoogle Scholar
  15. 15.
    Rahhal, M.M.A., Bazi, Y., Zuair, M.A., Othman, E., Benjdira, B.: Convolutional neural networks for electrocardiogram classification. J. Med. Biol. Eng. 38, 1014–1025 (2018)CrossRefGoogle Scholar
  16. 16.
    Xia, Y., Wulan, N., Wang, K., Zhang, H.: Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 93, 84–92 (2018)CrossRefGoogle Scholar
  17. 17.
    Wu, Y., Yang, F., Liu, Y., Zha, X., Yuan, S.: A comparison of 1-D and 2-D deep convolutional neural networks in ECG classification. arXiv:1810.07088 (2018)Google Scholar
  18. 18.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)CrossRefGoogle Scholar
  19. 19.
    Cho, K., Van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv:1406.1078 (2014)Google Scholar
  20. 20.
    Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555 (2014)Google Scholar
  21. 21.
    Faust, O., Shenfield, A., Kareem, M., San, T.R., Fujita, H., Acharya, U.R.: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals. Comput. Biol. Med. 102, 327–335 (2018)CrossRefGoogle Scholar
  22. 22.
    Wang, G., Zhang, C., Liu, Y., Yang, H., Fu, D., Wang, H., Zhang, P.: A global and updatable ECG beat classification system based on recurrent neural networks and active learning. Inf. Sci. 501, 523–542 (2018)CrossRefGoogle Scholar
  23. 23.
    Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018)CrossRefGoogle Scholar
  24. 24.
    Zihlmann, M., Perekrestenko, D., Tschannen, M.: Convolutional recurrent neural networks for electrocardiogram classification. arXiv:1710.06122 (2017)Google Scholar
  25. 25.
    Xiong, Z., Nash, M.P., Cheng, E., Fedorov, V.V., Stiles, M.K., Zhao, J.: ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol. Meas. 39(9), 094006 (2018)CrossRefGoogle Scholar
  26. 26.
    Andersen, R.S., Peimankar, A., Puthusserypady, S.: A deep learning approach for real-time detection of atrial fibrillation. Expert Syst. Appl. 115, 465–473 (2019)CrossRefGoogle Scholar
  27. 27.
    Oh, S.L., Ng, E.Y.K., Tan, R.S., Acharya, U.R.: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 102, 278–287 (2018)CrossRefGoogle Scholar
  28. 28.
    Xu, S.S., Mak, M., Cheung, C.: Towards end-to-end ECG classification with raw signal extraction and deep neural networks. IEEE J. Biomed. Health Inform. 23, 1574–1584 (2019)Google Scholar
  29. 29.
    Sannino, G., De Pietro, G.: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection. Futur. Gener. Comput. Syst. 86, 446–455 (2018)CrossRefGoogle Scholar
  30. 30.
    Liu, Z., Meng, X., Cui, J., Huang, Z., Wu, J.: Automatic identification of abnormalities in 12-Lead ECGs using expert features and convolutional neural networks. In: 2018 International Conference on Sensor Networks and Signal Processing (SNSP), vol. 1, pp. 163–167 (2018)Google Scholar
  31. 31.
    Mathews, S.M., Kambhamettu, C., Barner, K.E.: A novel application of deep learning for single-lead ECG classification. Comput. Biol. Med. 99, 53–62 (2018)CrossRefGoogle Scholar
  32. 32.
    Liu, F., Liu, C., Zhao, L., Zhang, X., Wu, X., Xu, X., Liu, Y., Ma, C., Wei, S., He, Z.: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J. Med. Imaging Health Inform. 8, 1368–1373 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Medical Instrument and Food Engineering, University of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations