Advertisement

Study on Automatic Classification of Arrhythmias

  • Runnan HeEmail author
  • Yang Liu
  • Henggui Zhang
Chapter
  • 30 Downloads

Abstract

Electrocardiogram (ECG) signals reveal the electrical activity of the heart and can be used to diagnose heart abnormalities. In the past few decades, ECG signals have been utilized for automatic arrhythmia detection owing to the noninvasive nature and convenience of electrocardiography. However, it is difficult to extract and select reliable features or design robust and generic classifiers because of the complexity and diversity of ECG signals. Consequently, improving the classification rate of arrhythmias still remains a considerable challenge. To resolve this pressing issue, we have proposed a model composed of preprocessing, feature extraction, and classification, where the correct implementation of each part is crucial for final arrhythmia identification. In this chapter, the literature on existing algorithms is comprehensively reviewed according to the aforementioned primary aspects.

Keywords

ECG Arrhythmia Classification Machine learning 

References

  1. 1.
    Alberdi, A., Aztiria, A., Basarab, A.: Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review. J. Biomed. Inform. 59, 49–75 (2016)PubMedGoogle Scholar
  2. 2.
    He, R., Wang, K., Li, Q., Yuan, Y., Zhao, N., Liu, Y., Zhang, H.: A novel method for the detection of R-peaks in ECG based on k-nearest neighbors and particle swarm optimization. EURASIP J. Adv. Signal Process. 82, 1–14 (2017)Google Scholar
  3. 3.
    Banerjee, S., Mitra, M.: Application of Cross Wavelet Transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63, 326–333 (2014)Google Scholar
  4. 4.
    De Lannoy, G., François, D., Delbeke, J., Verleysen, M.: Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 59, 241–247 (2012)PubMedGoogle Scholar
  5. 5.
    De Chazal, P., O’Dwyer, M., Reilly, R.B.: Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng. 51, 1196–1206 (2004)PubMedGoogle Scholar
  6. 6.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)Google Scholar
  7. 7.
    He, R., Wang, K., Zhao, N., Liu, Y., Yuan, Y., Li, Q., Zhang, H.: Automatic detection of atrial fibrillation based on continuous wavelet transform and 2d convolutional neural networks. Front. Physiol. 9, 1206 (2018)PubMedPubMedCentralGoogle Scholar
  8. 8.
    Hannun, A.Y., Rajpurkar, P., Haghpanahi, M., Tison, G.H., Bourn, C., Turakhia, M.P., Ng, A.Y.: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 25, 65–69 (2019)PubMedPubMedCentralGoogle Scholar
  9. 9.
    Llamedo, M., Martinez, J.P.: Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans. Biomed. Eng. 58, 616–625 (2011)PubMedGoogle Scholar
  10. 10.
    Lynn, P.: Recursive digital filters for biological signals. Med. Biol. Eng. Comput. 9, 37–43 (1979)Google Scholar
  11. 11.
    Ferrara, E.R., Widraw, B.: Fetal electrocardiogram enhancement by time-sequenced adaptive filtering. I.E.E.E. Trans. Biomed. Eng. 29, 458–460 (1982)Google Scholar
  12. 12.
    Yelderman, M., Widrow, B., Cioffi, J.M., Hesler, E., Leddy, J.A.: ECG enhancement by adaptive cancellation of electrosurgical interference. I.E.E.E. Trans. Biomed. Eng. 30, 392–398 (1983)Google Scholar
  13. 13.
    Thakor, N.V., Zhu, Y.-S.: Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection. I.E.E.E. Trans. Biomed. Eng. 38, 785–794 (1991)Google Scholar
  14. 14.
    Xue, Q., Hu, Y.H., Tompkins, W.J.: Neural-network-based adaptive matched filtering for QRS detection. I.E.E.E. Trans. Biomed. Eng. 39, 317–329 (1992)Google Scholar
  15. 15.
    Phukpattaranont, P.: QRS detection algorithm based on the quadratic filter. Expert Syst. Appl. 42, 4867–4877 (2015)Google Scholar
  16. 16.
    Elgendi, M.: Fast QRS detection with an optimized knowledge-based method: evaluation on 11 standard ECG databases. PLoS One. 8, 1–18 (2013)Google Scholar
  17. 17.
    Singh, B.N., Tiwari, A.K.: Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Process. 16, 275–287 (2006)Google Scholar
  18. 18.
    Chen, S.-W., Chen, H.-C., Chan, H.-L.: A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. Comput. Methods Programs Biomed. 82, 187–195 (2006)PubMedGoogle Scholar
  19. 19.
    Zadeh, A.E., Khazaee, A., Ranaee, V.: Classification of the electrocardiogram signals using supervised classifiers and efficient features. Comput. Methods Programs Biomed. 99, 179–194 (2010)PubMedGoogle Scholar
  20. 20.
    Sameni, R., Shamsollahi, M.B., Jutten, C., Clifford, G.D.: A nonlinear Bayesian filtering framework for ECG denoising. I.E.E.E. Trans. Biomed. Eng. 54, 2172–2185 (2007)Google Scholar
  21. 21.
    Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. I.E.E.E. Trans. Biomed. Eng. 32, 230–236 (1985)Google Scholar
  22. 22.
    Arzeno, N.M., Deng, Z.-D., Poon, C.-S.: Analysis of first-derivative based QRS detection algorithms. I.E.E.E. Trans. Biomed. Eng. 55, 478–484 (2008)Google Scholar
  23. 23.
    Merah, M., Abdelmalik, T.A., Larbi, B.H.: R-peaks detection based on stationary wavelet transform. Comput. Methods Prog. Biomed. 121, 149–160 (2015)Google Scholar
  24. 24.
    Berwal, D., Kumar, A., Kumar, Y.: Design of high performance QRS complex detector for wearable healthcare devices using biorthogonal spline wavelet transform. ISA Trans. 81, 222–230 (2018)PubMedGoogle Scholar
  25. 25.
    Mehta, S.S., Lingayat, N.: A combined entropy-based method for detection of QRS complexes in 12-lead electrocardiogram using SVM. Comput. Biol. Med. 38, 138–145 (2008)PubMedGoogle Scholar
  26. 26.
    Poli, R., Cagnoni, S., Valli, G.: Genetic design of optimum linear and nonlinear QRS detectors. I.E.E.E. Trans. Biomed. Eng. 42, 1137–1141 (1995)Google Scholar
  27. 27.
    Kim, H., Yazicioglu, R.F., Merken, P., van Hoof, C., Yoo, H.-J.: ECG signal compression and classification algorithm with quad level vector for ECG holter system. IEEE Trans. Inf. Technol. Biomed. 14, 93–100 (2010)PubMedGoogle Scholar
  28. 28.
    Moody, G.B., Mark, R.G.: The MIT-BIH arrhythmia database on CD-ROM and software for use with it. In: 1990 Proceedings Computers in Cardiology, pp. 185–188 (1990)Google Scholar
  29. 29.
    American Heart Association: AHA database. http://www.ahadata.com/ (1998)
  30. 30.
    Van Bemmel, J.H., Williams, J.L.: Standardisation and validation of medical decision support systems: the CSE project. Methods Inf. Med. 29, 261–262 (1990)PubMedGoogle Scholar
  31. 31.
    Liu, F., Liu, C., Zhao, L., Zhang, X., Wu, X., Xu, X., Liu, Y., Ma, C., Wei, S., He, Z., Li, J., Ng, E.Y.: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J. Med. Imaging Health Inform. 8, 1368–1373 (2018)Google Scholar
  32. 32.
    Leevy, J.L., Khoshgoftaar, T.M., Bauder, R.A., Seliya, N.: A survey on addressing high-class imbalance in big data. J. Big Data. 5, 1–30 (2018)Google Scholar
  33. 33.
    Guo, H., Li, Y., Shang, J., Gu, M., Huang, Y., Gong, B.: Learning from class imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)Google Scholar
  34. 34.
    Chawla, N., Bowyer, K., Hall, L.O., Philip Kegelmeyer, W.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)Google Scholar
  35. 35.
    He, H., Bai, Y., Garcia, E.A., Li, S.: Adasyn: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 1322–1328 (2008)Google Scholar
  36. 36.
    Guo, H., Viktor, H.L.: Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. ACM SIGKDD Explor. Newslett. 6, 30–39 (2004)Google Scholar
  37. 37.
    Maldonado, S., López, J., Vairetti, C.: An alternative SMOTE oversampling strategy for high-dimensional datasets. Appl. Soft Comput. 76, 380–389 (2019)Google Scholar
  38. 38.
    Jiang, J., Zhang, H., Pi, D., Dai, C.: A novel multi-module neural network system for imbalanced heartbeats classification. Expert Syst. Appl. X. 1, 100003 (2019)Google Scholar
  39. 39.
    Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recogn. 40, 3358–3378 (2007)Google Scholar
  40. 40.
    Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18, 63–77 (2006)Google Scholar
  41. 41.
    Wang, S., Liu, W., Wu, J., Cao, L., Meng, Q., Kennedy, P.J.: Training deep neural networks on imbalanced data sets. In: International Joint Conference on Neural Networks, pp. 4368–4374 (2016)Google Scholar
  42. 42.
    Maldonado, S., López, J.: Imbalanced data classification using second-order cone programming support vector machines. Pattern Recogn. 47, 2070–2079 (2014)Google Scholar
  43. 43.
    Liu, X.Y., Wu, J., Zhou, Z.H.: Exploratory undersampling for class imbalance learning. IEEE Trans. Syst. Man Cybern. B. 39, 539–550 (2009)Google Scholar
  44. 44.
    Havaei, M., Davy, A., Wardefarley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P., Larochelle, H.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)PubMedGoogle Scholar
  45. 45.
    Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2672–2680 (2014)Google Scholar
  46. 46.
    Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 1–14 (2016)Google Scholar
  47. 47.
    Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv:1711.04340v2 (2018)Google Scholar
  48. 48.
    Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using gan for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 289–293 (2018)Google Scholar
  49. 49.
    Bolelli, F., Pollastri, F., Palacios, R.P., Grana, C.: Improving skin lesion segmentation with generative adversarial networks. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), pp. 442–443 (2018)Google Scholar
  50. 50.
    Lima, J.L., Macêdo, D., Zanchettin, C.: Heartbeat anomaly detection using adversarial oversampling. arXiv preprint arXiv:1901.09972 (2019)Google Scholar
  51. 51.
    Korürek, M., Doğan, B.: ECG beat classification using particle swarm optimization and radial basis function neural network. Expert Syst. Appl. 37, 7563–7569 (2010)Google Scholar
  52. 52.
    Kumar, R.G., Kumaraswamy, Y.S.: Investigation and classification of ECG beat using input output additional weighted feed forward neural network. In: International Conference on Signal Processing, Image Processing & Pattern Recognition (ICSIPR), pp. 200–205 (2013)Google Scholar
  53. 53.
    Ye, C., Kumar, B.V.K.V., Coimbra, M.T.: Heartbeat classification using morphological and dynamic features of ECG signals. I.E.E.E. Trans. Biomed. Eng. 59, 2930–2941 (2012)Google Scholar
  54. 54.
    Chen, S.S., Hua, W., Li, Z., Li, J., Gao, X.J.: Heartbeat classification using projected and dynamic features of ECG signal. Biomed. Signal Process. 31, 165–173 (2017)Google Scholar
  55. 55.
    Sharma, P., Ray, K.C.: Efficient methodology for electrocardiogram beat classification. IET Signal Process. 10, 825–832 (2016)Google Scholar
  56. 56.
    Song, C.Y., Liu, K.B., Zhang, X., Chen, L.L., Xian, X.C.: An obstructive sleep apnea detection approach using a discriminative hidden Markov model from ECG signals. I.E.E.E. Trans. Biomed. Eng. 63, 1532–1542 (2016)Google Scholar
  57. 57.
    Afkhami, R.G., Azarnia, G., Tinati, M.A.: Cardiac arrhythmia classification using statistical and mixture modeling features of ECG signals. Pattern Recogn. Lett. 70, 45–51 (2016)Google Scholar
  58. 58.
    Martis, R., Acharya, R., Ray, A.: Application of higher order cumulants to ECG signals for the cardiac health diagnosis. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1697–1700, Boston, MA (2011)Google Scholar
  59. 59.
    Kumar, M., Pachori, R.B., Acharya, U.R.: Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomed. Signal Process. 31, 301–308 (2017)Google Scholar
  60. 60.
    Hassan, A.R., Haque, M.A.: An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting. Neurocomputing. 235, 122–130 (2017)Google Scholar
  61. 61.
    Chawla, M.: A comparative analysis of principal component and independent component techniques for electrocardiograms. Neural Comput. Appl. 18, 539–556 (2009)Google Scholar
  62. 62.
    Kallas, M., Francis, C., Kanaan, L., Merheb, D., Honeine, P., Amoud, H.: Multi-class SVM classification combined with kernel PCA feature extraction of ECG signals. In: International Conference on Telecommunications (ICT), pp. 1–5 (2012)Google Scholar
  63. 63.
    Ubeyli, E.D.: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Expert Syst. Appl. 37, 1192–1199 (2010)Google Scholar
  64. 64.
    Ergin, S., Uysal, A.K., Gunal, E.S., Gunal, S., Gulmezoglu, M.B.: ECG based biometric authentication using ensemble of features. In: 9th Iberian Conference on Information Systems and Technologies (CISTI). IEEE. pp. 1–6 (2014)Google Scholar
  65. 65.
    Vafaie, M.H., Ataei, M., Koofigar, H.R.: Heart diseases prediction based on ECG signals’ classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomed. Signal Process. 14, 291–296 (2014)Google Scholar
  66. 66.
    Gunal, S., Gerek, O.N., Ece, D.G., Edizkan, R.: The search for optimal feature set in power quality event classification. Expert Syst. Appl. 36, 10266–10273 (2009)Google Scholar
  67. 67.
    Kittler, J.: Feature set search algorithms. In: Pattern Recognition and Signal Processing, vol. 29. Springer, Netherlands (1978)Google Scholar
  68. 68.
    Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature-selection. Pattern Recogn. Lett. 15, 1119–1125 (1994)Google Scholar
  69. 69.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)Google Scholar
  70. 70.
    Chui, K.T., Tsang, K.F., Chi, H.R., Ling, B.W.K., Wu, C.K.: An accurate ECG-based transportation safety drowsiness detection scheme. IEEE Trans. Ind. Inf. 12, 1438–1452 (2016)Google Scholar
  71. 71.
    Li, H.Q., Yuan, D.Y., Ma, X.D., Cui, D.Y., Cao, L.: Genetic algorithm for the optimization of features and neural networks in ECG signals classification. Sci. Rep. 7, 41011 (2017)PubMedPubMedCentralGoogle Scholar
  72. 72.
    Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35, 1817–1824 (2008)Google Scholar
  73. 73.
    Nimbhorkar, N.B., Alaspurkar, S.J.: Probabilistic neural network in solving various pattern classification problems. Int. J. Comput. Sci. Netw. Secur. 14, 133–137 (2014)Google Scholar
  74. 74.
    Yu, S.-N., Chen, Y.-H.: Electrocardiogram beat classification based on wavelet transformation and probabilistic neural network. Pattern Recogn. Lett. 28, 1142–1150 (2007)Google Scholar
  75. 75.
    Martis, R.J., Acharya, U.R., Min, L.C.: ECG beat classification using PCA, LDA ICA and discrete wavelet transform. Biomed. Signal Process. 8, 437–448 (2013)Google Scholar
  76. 76.
    Wang, J.S., Chiang, W.C., Hsu, Y.L., Yang, Y.T.C.: ECG arrhythmia classification using a probabilistic neural network with a feature reduction method. Neurocomputing. 116, 38–45 (2013)Google Scholar
  77. 77.
    Özbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Comput. Biol. Med. 36, 376–388 (2006)PubMedGoogle Scholar
  78. 78.
    Li, P.F., Wang, Y., He, J.C., Wang, L.H., Tian, Y., Zhou, T.S., Li, T.C., Li, J.S.: High-performance personalized heartbeat classification model for long-term ECG signal. I.E.E.E. Trans. Biomed. Eng. 64, 78–86 (2017)Google Scholar
  79. 79.
    Jewajinda, Y., Chongstitvatana, P.: A parallel genetic algorithm for adaptive hardware and its application to ECG signal classification. Neural Comput. Appl. 22, 1609–1626 (2013)Google Scholar
  80. 80.
    Osowski, S., Markiewicz, T., Hoai, L.T.: Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement. 41, 610–617 (2008)Google Scholar
  81. 81.
    Liu, Q., Pitt, D., Wu, X.: On the prediction of claim duration for income protection insurance policyholders. Ann. Actuar. Sci. 8, 42–62 (2014)Google Scholar
  82. 82.
    Chen, T.H., Mazomenos, E.B., Maharatna, K., Dasmahapatra, S., Niranjan, M.: Design of a low-power on-body ECG classifier for remote cardiovascular monitoring systems. IEEE J. Emerging Sel. Top. Circuits Syst. 3, 75–85 (2013)Google Scholar
  83. 83.
    Wang, J.S., Lin, C.W., Yang, Y.T.C.: A k-nearest-neighbor classifier with heartrate variability feature-based transformation algorithm for driving stress recognition. Neurocomputing. 116, 136–143 (2013)Google Scholar
  84. 84.
    Homaeinezhad, M.R., Atyabi, S.A., Tavakkoli, E., Toosi, H.N., Ghaffari, A., Ebrahimpour, R.: ECG arrhythmia recognition via a neuro-SVM-KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39, 2047–2058 (2012)Google Scholar
  85. 85.
    Martis, R.J., Acharya, U.R., Prasad, H., Chua, C.K., Lim, C.M., Suri, J.S.: Application of higher order statistics for atrial arrhythmia classification. Biomed. Signal Process. 8, 888–900 (2013)Google Scholar
  86. 86.
    Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sornmo, L.: Clustering ECG complexes using Hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47, 838–848 (2000)PubMedGoogle Scholar
  87. 87.
    Özbay, Y., Tezel, G.: A new method for classification of ECG arrhythmias using neural network with adaptive activation function. Digital Signal Process. 20, 1040–1049 (2010)Google Scholar
  88. 88.
    Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)Google Scholar
  89. 89.
    Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Prog. Biomed. 127, 52–63 (2016)Google Scholar
  90. 90.
    Raj, S., Ray, K.C.: ECG signal analysis using DCT-based DOST and PSO optimized SVM. IEEE Trans. Instrum. Meas. 66, 470–478 (2017)Google Scholar
  91. 91.
    Seera, M., Lim, C.P., Liew, W.S., Lim, E., Loo, C.K.: Classification of electrocardiogram and auscultatory blood pressure signals using machine learning models. Expert Syst. Appl. 42, 3643–3652 (2015)Google Scholar
  92. 92.
    Fayn, J.: A classification tree approach for cardiac ischemia detection using spatiotemporal information from three standard ECG leads. I.E.E.E. Trans. Biomed. Eng. 58, 95–102 (2011)Google Scholar
  93. 93.
    Martis, R.J., Acharya, U.R., Prasad, H., Chua, C.K., Lim, C.M.: Automated detection of atrial fibrillation using Bayesian paradigm. Knowl.-Based Syst. 54, 269–275 (2013)Google Scholar
  94. 94.
    Lee, J., McManus, D.D., Bourrell, P., Sornmo, L., Chon, K.H.: Atrial flutter and atrial tachycardia detection using Bayesian approach with high resolution time-frequency spectrum from ECG recordings. Biomed. Signal Process. 8, 992–999 (2013)Google Scholar
  95. 95.
    Singh, Y.N., Gupta, P.: Correlation-based classification of heartbeats for individual identification. Soft. Comput. 15, 449–460 (2011)Google Scholar
  96. 96.
    Abo-Zahhad, M., Ahmed, S.M., Abbas, S.N.: Biometric authentication based on PCG and ECG signals: present status and future directions. Signal Image Video Process. 8, 739–751 (2014)Google Scholar
  97. 97.
    Yang, H., Kan, C., Liu, G., Chen, Y.: Spatiotemporal differentiation of myocardial infarctions. IEEE Trans. Autom. Sci. Eng. 10, 938–947 (2013)Google Scholar
  98. 98.
    Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1134–1142 (2015)Google Scholar
  99. 99.
    Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Penn, G.: Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. pp. 4277–4280 (2012)Google Scholar
  100. 100.
    Association for the Advancement of Medical Instrumentation: Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. ANSI/AAMI EC38 (1998)Google Scholar
  101. 101.
    Li, D., Zhang, J., Zhang, Q., Wei, X.: Classification of ECG signals based on 1D convolution neural network. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom). IEEE. pp. 1–6 (2017)Google Scholar
  102. 102.
    Kiranyaz, S., Ince, T., Gabbouj, M.: Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2015)Google Scholar
  103. 103.
    Kachuee, M., Fazeli, S., Sarrafzadeh, M.: ECG heartbeat classification: a deep transferable representation. In: 2018 IEEE International Conference on Healthcare Informatics (ICHI). IEEE. pp. 443–444 (2018)Google Scholar
  104. 104.
    Acharya, U.R., Fujita, H., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M.: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf. Sci. 415, 190–198 (2017)Google Scholar
  105. 105.
    Liu, W., Zhang, M., Zhang, Y., Liao, Y., Huang, Q., Chang, S., Wang, H., He, J.: Real-time multilead convolutional neural network for myocardial infarction detection. IEEE J. Biomed. Health Inform. 22, 1434–1444 (2017)PubMedGoogle Scholar
  106. 106.
    Liu, W., Huang, Q., Chang, S., Wang, H., He, J.: Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram. Biomed. Signal Process. Control. 45, 22–32 (2018)Google Scholar
  107. 107.
    Xia, Y., Wulan, N., Wang, K., Zhang, H.: Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 93, 84–92 (2018)Google Scholar
  108. 108.
    Clifford, G.D., Liu, C., Moody, B., Li-wei, H.L., Silva, I., Li, Q., Mark, R.G.: AF Classification from a short single lead ECG recording: the PhysioNet/Computing in Cardiology Challenge 2017. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  109. 109.
    Andreotti, F., Carr, O., Pimentel, M.A., Mahdi, A., De Vos, M.: Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. In 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  110. 110.
    Rubin, J., Parvaneh, S., Rahman, A., Conroy, B., Babaeizadeh, S.: Densely connected convolutional networks and signal quality analysis to detect atrial fibrillation using short single-lead ECG recordings. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  111. 111.
    Plesinger, F., Nejedly, P., Viscor, I., Halamek, J., Jurak, P.: Automatic detection of atrial fibrillation and other arrhythmias in holter ECG recordings using rhythm features and neural networks. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  112. 112.
    Ghiasi, S., Abdollahpur, M., Madani, N., Kiani, K., Ghaffari, A.: Atrial fibrillation detection using feature based algorithm and deep convolutional neural network. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  113. 113.
    Singh, S., Pandey, S.K., Pawar, U., Janghel, R.R.: Classification of ECG arrhythmia using recurrent neural networks. Proc. Comput. Sci. 132, 1290–1297 (2018)Google Scholar
  114. 114.
    Yildirim, Ö.: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification. Comput. Biol. Med. 96, 189–202 (2018)Google Scholar
  115. 115.
    Schwab, P., Scebba, G.C., Zhang, J., Delai, M., Karlen, W.: Beat by beat: classifying cardiac arrhythmias with recurrent neural networks. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  116. 116.
    Teijeiro, T., García, C.A., Castro, D., Félix, P.: Arrhythmia classification from the abductive interpretation of short single-lead ECG records. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  117. 117.
    Warrick, P., Homsi, M.N.: Cardiac arrhythmia detection from ECG combining convolutional and long short-term memory networks. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  118. 118.
    Zihlmann, M., Perekrestenko, D., Tschannen, M.: Convolutional recurrent neural networks for electrocardiogram classification. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  119. 119.
    Limam, M., Precioso, F.: Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network. In 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  120. 120.
    Xiong, Z., Nash, M.P., Cheng, E., Fedorov, V.V., Stiles, M.K., Zhao, J.: ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol. Meas. 39, 094006 (2018)PubMedPubMedCentralGoogle Scholar
  121. 121.
    Shashikumar, S.P., Shah, A.J., Clifford, G.D., Nemati, S.: Detection of paroxysmal atrial fibrillation using attention-based bidirectional recurrent neural networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM. pp. 715–723 (2018)Google Scholar
  122. 122.
    Hong, S., Wu, M., Zhou, Y., Wang, Q., Shang, J., Li, H., Xie, J.: ENCASE: an ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks. In: 2017 Computing in Cardiology (CinC). IEEE. pp. 1–4 (2017)Google Scholar
  123. 123.
    Jiang, C., Song, S., Meng, M.Q.H.: Heartbeat classification system based on modified stacked denoising autoencoders and neural networks. In: 2017 IEEE International Conference on Information and Automation (ICIA). IEEE. pp. 511–516 (2017)Google Scholar
  124. 124.
    Yang, J., Bai, Y., Lin, F., Liu, M., Hou, Z., Liu, X.: A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression. Int. J. Mach. Learn. Cybern. 9, 1733–1740 (2018)Google Scholar
  125. 125.
    Rajan, D., Thiagarajan, J.J.: A generative modeling approach to limited channel ECG classification. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. pp. 2571–2574 (2018)Google Scholar
  126. 126.
    Yildirim, O., Baloglu, U.B., Tan, R.S., Ciaccio, E.J., Acharya, U.R.: A new approach for arrhythmia classification using deep coded features and LSTM networks. Comput. Methods Prog. Biomed. 176, 121–133 (2019)Google Scholar
  127. 127.
    He, R., Liu, Y., Wang, K., Zhao, N., Yuan, Y., Li, Q., Zhang, H.: Automatic cardiac arrhythmia classification using combination of deep residual network and bidirectional LSTM. IEEE Access. 7, 102119–102135 (2019)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Computer Science and Technology, Harbin Institute of TechnologyHarbinChina
  2. 2.Biological Physics Group, Department of Physics and AstronomyUniversity of ManchesterManchesterUK
  3. 3.Peng Cheng LaboratoryShenzhenChina
  4. 4.Pilot National Laboratory of Marine Science and TechnologyQingdaoChina
  5. 5.International Laboratory for Smart Systems and Key Laboratory of Intelligent of Computing in Medical ImageMinistry of Education, Northeastern UniversityShenyangChina

Personalised recommendations