Advertisement

Noninvasive Recording of Cardiac Autonomic Nervous Activity: What Is Behind ECG?

  • Yike Zhang
  • Chang CuiEmail author
  • Minglong ChenEmail author
Chapter
  • 25 Downloads

Abstract

The autonomic nervous system, which is divided into the sympathetic nervous system and the parasympathetic nervous system, takes part in various physiological processes. The assessment of autonomic nervous activity is necessary for disease diagnosis and risk stratification for patients. Noninvasive testing approaches based on ECG, such as heart rate variability, heart rate turbulence, baroreflex sensitivity, and skin sympathetic nerve activity, are briefly introduced in this chapter to enlighten broader applications of these physiological signals in clinical work.

Keywords

Autonomic nervous system Heart rate variability Skin sympathetic nerve activity 

References

  1. 1.
    McCorry, L.K.: Physiology of the autonomic nervous system. Am. J. Pharm. Educ. 71, 78 (2007).  https://doi.org/10.5688/aj710478CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Herring, N., Kalla, M., Paterson, D.J.: The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat. Rev. Cardiol. 16, 707–726 (2019).  https://doi.org/10.1038/s41569-019-0221-2CrossRefPubMedGoogle Scholar
  3. 3.
    Goldberger, J.J., Arora, R., Buckley, U., Shivkumar, K.: Autonomic nervous system dysfunction: JACC focus seminar. J. Am. Coll. Cardiol. 73, 1189–1206 (2019).  https://doi.org/10.1016/j.jacc.2018.12.064CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 93, 1043–1065 (1996).  https://doi.org/10.1161/01.Cir.93.5.1043CrossRefGoogle Scholar
  5. 5.
    Hon, E.H., Lee, S.T.: Electronic evaluation of the fetal heart rate. VIII. Patterns preceding fetal death, further observations. Am. J. Obstet. Gynecol. 87, 814–826 (1963)CrossRefGoogle Scholar
  6. 6.
    Ewing, D.J., Martyn, C.N., Young, R.J., Clarke, B.F.: The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 8, 491–498 (1985).  https://doi.org/10.2337/diacare.8.5.491CrossRefPubMedGoogle Scholar
  7. 7.
    Odemuyiwa, O., et al.: Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am. J. Cardiol. 68, 434–439 (1991).  https://doi.org/10.1016/0002-9149(91)90774-fCrossRefPubMedGoogle Scholar
  8. 8.
    Jarczok, M.N., Koenig, J., Wittling, A., Fischer, J.E., Thayer, J.F.: First evaluation of an index of low vagally-mediated heart rate variability as a marker of health risks in human adults: proof of concept. J. Clin. Med. 8, E1940 (2019).  https://doi.org/10.3390/jcm8111940CrossRefPubMedGoogle Scholar
  9. 9.
    Hayano, J., Yuda, E.: Pitfalls of assessment of autonomic function by heart rate variability. J. Physiol. Anthropol. 38, 3 (2019).  https://doi.org/10.1186/s40101-019-0193-2CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schmidt, G., et al.: Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet. 353, 1390–1396 (1999).  https://doi.org/10.1016/s0140-6736(98)08428-1CrossRefPubMedGoogle Scholar
  11. 11.
    Patel, V.N., et al.: Association of Holter-derived heart rate variability parameters with the development of congestive heart failure in the cardiovascular health study. JACC Heart Fail. 5, 423–431 (2017).  https://doi.org/10.1016/j.jchf.2016.12.015CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Makimoto, H., et al.: Reduced heart rate response after premature ventricular contraction depending on severity of atrial fibrillation symptoms - analysis on heart rate turbulence in atrial fibrillation patients. Int. J. Cardiol. Heart Vasc. 18, 33–38 (2018).  https://doi.org/10.1016/j.ijcha.2018.02.004CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jansen, C., et al.: Severe abnormal Heart Rate Turbulence Onset is associated with deterioration of liver cirrhosis. PLoS One. 13, e0195631 (2018).  https://doi.org/10.1371/journal.pone.0195631CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Poliwczak, A.R., Waszczykowska, E., Dziankowska-Bartkowiak, B., Kozirog, M., Dworniak, K.: The use of heart rate turbulence and heart rate variability in the assessment of autonomic regulation and circadian rhythm in patients with systemic lupus erythematosus without apparent heart disease. Lupus. 27, 436–444 (2018).  https://doi.org/10.1177/0961203317725590CrossRefPubMedGoogle Scholar
  15. 15.
    La Rovere, M.T., Mortara, A., Schwartz, P.J.: Baroreflex sensitivity. J. Cardiovasc. Electrophysiol. 6, 761–774 (1995).  https://doi.org/10.1111/j.1540-8167.1995.tb00452.xCrossRefPubMedGoogle Scholar
  16. 16.
    La Rovere, M.T., Pinna, G.D., Raczak, G.: Baroreflex sensitivity: measurement and clinical implications. Ann. Noninvasive Electrocardiol. 13, 191–207 (2008).  https://doi.org/10.1111/j.1542-474X.2008.00219.xCrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rovere, M.T.L., Bigger, J.T., Marcus, F.I., Mortara, A., Schwartz, P.J.: Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 351, 478–484 (1998).  https://doi.org/10.1016/s0140-6736(97)11144-8CrossRefPubMedGoogle Scholar
  18. 18.
    Pinna, G.D., et al.: Applicability and clinical relevance of the transfer function method in the assessment of baroreflex sensitivity in heart failure patients. J. Am. Coll. Cardiol. 46, 1314–1321 (2005).  https://doi.org/10.1016/j.jacc.2005.06.062CrossRefPubMedGoogle Scholar
  19. 19.
    Mortara, A., et al.: Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation. 96, 3450–3458 (1997).  https://doi.org/10.1161/01.cir.96.10.3450CrossRefPubMedGoogle Scholar
  20. 20.
    Li, H., et al.: Baroreflex sensitivity predicts short-term outcome of postural tachycardia syndrome in children. PLoS One. 11, e0167525 (2016).  https://doi.org/10.1371/journal.pone.0167525CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Subramanian, S.K., Sharma, V.K., Arunachalam, V., Rajendran, R., Gaur, A.: Comparison of baroreflex sensitivity and cardiac autonomic function between adolescent athlete and non-athlete boys - a cross-sectional study. Front. Physiol. 10, 1043 (2019).  https://doi.org/10.3389/fphys.2019.01043CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jiang, Z., et al.: Using skin sympathetic nerve activity to estimate stellate ganglion nerve activity in dogs. Heart Rhythm. 12, 1324–1332 (2015).  https://doi.org/10.1016/j.hrthm.2015.02.012CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Doytchinova, A., et al.: Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram. Heart Rhythm. 14, 25–33 (2017).  https://doi.org/10.1016/j.hrthm.2016.09.019CrossRefPubMedGoogle Scholar
  24. 24.
    Kumar, A., et al.: Skin sympathetic nerve activity as a biomarker for syncopal episodes during a tilt table test. Heart Rhythm. (2019) (in press).  https://doi.org/10.1016/j.hrthm.2019.10.008
  25. 25.
    Liu, X., et al.: Effects of anesthetic and sedative agents on sympathetic nerve activity. Heart Rhythm. 16, 1875–1882 (2019).  https://doi.org/10.1016/j.hrthm.2019.06.017CrossRefPubMedGoogle Scholar
  26. 26.
    Yuan, Y., et al.: Left cervical vagal nerve stimulation reduces skin sympathetic nerve activity in patients with drug resistant epilepsy. Heart Rhythm. 14, 1771–1778 (2017).  https://doi.org/10.1016/j.hrthm.2017.07.035CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Uradu, A., et al.: Skin sympathetic nerve activity precedes the onset and termination of paroxysmal atrial tachycardia and fibrillation. Heart Rhythm. 14, 964–971 (2017).  https://doi.org/10.1016/j.hrthm.2017.03.030CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kusayama, T. et al. Skin sympathetic nerve activity and ventricular rate control during atrial fibrillation. Heart Rhythm. 17, 544–552 (2020).  https://doi.org/10.1016/j.hrthm.2019.11.017
  29. 29.
    Zhang, P., et al.: Characterization of skin sympathetic nerve activity in patients with cardiomyopathy and ventricular arrhythmia. Heart Rhythm. 16, 1669–1675 (2019).  https://doi.org/10.1016/j.hrthm.2019.06.008CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations