Advertisement

Rubbery Materials and Soft Nanocomposites

  • Shinzo Kohjiya
  • Atsushi Kato
  • Yuko Ikeda
Chapter
  • 64 Downloads
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Rubbers are to be vulcanized and reinforced for their applications. Vulcanization is the most important prerequisite for displaying a stable rubber elasticity for practical utilization, while rubber reinforcement is to meet the demands of practical uses in terms of mechanical and some other functional requirements. Among lots of ingredients for rubber compounding, carbon black (CB) was found to afford several crucial characteristics for rubber tires as well as mechanical strength, early in the twentieth century. Since then, CB has been the most important filler for rubber industry, and the natural rubber (NR)-CB combination pioneered a new concept, polymer composite, together with the use of the rubber/fiber composition. This chapter gives a highly scientific but still general introduction to rubber reinforcement by means of filler. Traditional approaches are briefly described, too, from a retrospective point of view, which are expected to afford an excellent base for a modern approach to rubber reinforcement in this century.

Keywords

Vulcanization Reinforcement of rubber Filler Carbon black Nanocomposite 

References

  1. 1.
    S. Kohjiya, Natural Rubber: From the Odyssey of the Hevea Tree to the Transportation Age (Smithers Rapra, Shrewsbury, 2015)Google Scholar
  2. 2.
    S. Kohjiya, Y. Ikeda (eds.), Chemistry, Manufacture and Applications of Natural Rubber (Woodhead/Elsevier, Cambridge, 2014)Google Scholar
  3. 3.
    Y. Ikeda, A. Kato, S. Kohjiya, Y. Nakajima, Rubber Science: A Modern Approach (Springer, Singapore, 2017)Google Scholar
  4. 4.
    L. Bateman (ed.), The Chemistry and Physics of Rubber-Like Substances (Maclaren & Sons, London, UK, 1963)Google Scholar
  5. 5.
    G. Kraus (ed.), Reinforcement of Elastomers (Interscience, New York, 1965)Google Scholar
  6. 6.
    H. Long (ed.), Basic Compounding and Processing of Rubber (Rubber Division, American Chemical Society, Akron, 1985)Google Scholar
  7. 7.
    W. Hoffmann, translated into English by R. Bauer, E.A. Meinecke, Rubber Technology Handbook (Hanser, Munich, 1989) [Original German edition was published in 1980 by Gentner Verlag, Stuttgart]Google Scholar
  8. 8.
    A.D. Roberts (ed.), Natural Rubber Science and Technology (Oxford University Press, Oxford, UK, 1988)Google Scholar
  9. 9.
    M. Morton (ed.), Rubber Technology, 3rd edn. (Chapman & Hall, London, 1995)Google Scholar
  10. 10.
    B. Rodgers (ed.), Rubber Compounding: Chemistry and Applications (Marcel Dekker, New York, 2004)Google Scholar
  11. 11.
    J.E. Mark, B. Erman, C.M. Roland (eds.), The Science and Technology of Rubber, 4th edn. (Academic Press, Waltham, MA, 2013) [This book and Ref. 7 have compiled much of the traditional ideas and/or results on rubbers from engineering and chemical viewpoints]Google Scholar
  12. 12.
    A. Kato, A. Tohsan, S. Kohjiya, T. Phakkeeree, P. Phinyocheep, Y. Ikeda, in Progress in Rubber Nanocomposites, Chap. 12, ed. by S. Thomas, H.J. Maria (Woodhead/Elsevier, Duxford, 2017)Google Scholar
  13. 13.
    H.J. Stern, in Vignettes from the International Rubber Science Hall of Fame (1958–1988): 36 Major Contributors to Rubber Science, ed. by B.N. Zimmerman (Rubber Division, American Chemical Society, Akron, 1989), pp. 193–197Google Scholar
  14. 14.
    S. Kohjiya, Y. Ikeda, in Solid State Ionics for Batteries, Chap. 6, ed. by T. Minami, M. Tatsumisago, M. Iwakura, S. Kohjiya, I. Tanaka (Springer, Tokyo, 2005)Google Scholar
  15. 15.
    K.C. Baranwal, in Vignettes from the International Rubber Science Hall of Fame (1958–1988): 36 Major Contributors to Rubber Science, ed. by B.N. Zimmerman (Rubber Division, American Chemical Society, Akron, 1989), pp. 170–177Google Scholar
  16. 16.
    Y. Ikeda, Y. Yasuda, T. Ohashi, H. Yokoyama, S. Minoda, H. Kobayashi, T. Honma, Macromolecules 48, 462 (2015)Google Scholar
  17. 17.
    Y. Ikeda, H. Kobayashi, S. Kohjiya, Kagaku 70, 27 (2015) (in Japanese)Google Scholar
  18. 18.
    Y. Sakaki, R. Usami, A. Tohsan, P. Junkong, Y. Ikeda, RSC. Adv. 8, 10727 (2018)Google Scholar
  19. 19.
    A. Tohsan, Y. Yasuda, R. Usami, T. Ohashi, Y. Sakaki, P. Junkong, Y. Ikeda, Kautsch. Gummi Kunstst (June), 111 (2018)Google Scholar
  20. 20.
    T. Ohashi, T. Sato, T. Nakajima, P. Junkong, Y. Ikeda, RSC. Adv. 8, 32930 (2018)Google Scholar
  21. 21.
    Y. Ikeda, Y. Sakaki, Y. Yasuda, P. Junkong, T. Ohashi, K. Miyaji, H. Kobayashi, Organometallics 38, 2363 (2019)Google Scholar
  22. 22.
    A. Kelly (ed.), Concise Encyclopedia of Composite Materials, Revised (Pergamon, London, 1994)Google Scholar
  23. 23.
    F. Li, J. Liu, H. Yang, Y. Lu, L. Zhang, Polymer 101, 199 (2016) [Heat build-up is an industrially important subject. Not many studies have been published. This one is of value as a disclosed modern approach]Google Scholar
  24. 24.
    S.-J. Park, M.-K. Seo, in Polymer Composites, Chap. 5, vol 1, ed. by S. Thomas, K. Joseph, S.K. Malhotra, K. Goda, M.S. Sreekala (Wiley-VCH, Weinheim, 2011)Google Scholar
  25. 25.
    A. Das, G. Heinrich, Graphene-Rubber Nanocomposites, in Encyclopedia of Polymeric Nanomaterials (Springer, Berlin, 2014)Google Scholar
  26. 26.
    V. Mittal, Macromol. Mater. Eng. 299, 906–931 (2014)Google Scholar
  27. 27.
    G.S. Whitby, C.C. Davis, R.F. Dunbrook (eds.), Synthetic Rubber (Wiley, New York, 1954) [Authoritative book on synthetic rubbers published at an early stage of their commercialization]Google Scholar
  28. 28.
    U. Schubert (ed.), Silicon Chemistry (Springer, Heidelberg, 2012)Google Scholar
  29. 29.
    E.P. Plueddemann, Silane Coupling Agents, 2nd edn. (Plenum Press, New York, 1982)Google Scholar
  30. 30.
    M.P. Wagner, Rubber World 164, 46 (1971)Google Scholar
  31. 31.
    S. Wolff, Kautsch. Gummi Kunstst. 30, 516 (1977)Google Scholar
  32. 32.
    A.S. Hashim, B. Azahari, Y. Ikeda, S. Kohjiya, Rubber Chem. Technol. 71, 289 (1998)Google Scholar
  33. 33.
    S. Kohjiya, Y. Ikeda, Rubber Chem. Technol. 73, 534 (2000)Google Scholar
  34. 34.
    W. Meon, A. Blume, H.-D. Lunginsland, S. Uhrlandt, Rubber Compounding: Chemistry and Applications, Chap. 7, ed. by B. Rodgers (Marcel Dekker, New York, 2004)Google Scholar
  35. 35.
    L.R.G. Treloar, The Physics of Rubber Elasticity, 3rd edn. (Clarendon Press, Oxford, 1975)Google Scholar
  36. 36.
    B. Erman, J.E. Mark, Structures and Properties of Rubberlike Networks (Oxford University Press, New York, 1997)Google Scholar
  37. 37.
    W.W. Graessley, Polymeric Liquids and Networks: Dynamics and Rheology (Garland Science, London, 2008)Google Scholar
  38. 38.
    C.M. Roland, Viscoelastic Behavior of Rubbery Materials (Oxford University Press, Oxford, 2011)Google Scholar
  39. 39.
    S. Kohjiya, in Nanotechnology and Soft Matters, ed. by Rubber Forum (Posty Co., Tokyo, 2005), pp. 1–7 (in Japanese)Google Scholar
  40. 40.
    Y. Dong, R. Umer, A.K. Tak Lau, Fillers and Reinforcements for Advanced Nanocomposites (Woodhead/Elsevier, Cambridge, 2015)Google Scholar
  41. 41.
    K.E. Drexler, Proc. Natl. Acad. Sci. USA 78, 5275 (1981)Google Scholar
  42. 42.
    D. Mulhall, Our Molecular Future: How Nanotechnology, Robotics, Genetics, and Artificial Intelligence Will Transform Our World (Prometheus Books, New York, 2002)Google Scholar
  43. 43.
    K.E. Drexle, Bull. Sci. Tech. Soc. 24(1) 21 (2004)Google Scholar
  44. 44.
    R.E. Smalley, Of chemistry, love and nanorobots-how soon will we see the nanometer-scale robots envisaged by K. Evic Drexler and other molecular nanotechnologies? The simple answer is never. Sci. Am. (September), 68 (2001)Google Scholar
  45. 45.
    K. Kulinowski, Nanotechnology from “wow” to “yuck”? Bull. Sci. Tech. Soc. 24(1) 13 (2004)Google Scholar
  46. 46.
    M. Pelow, Nature 525, 18 (3 September 2015)Google Scholar
  47. 47.
    R. Van Noorden, D. Castelvecchi, Nature 538, 152 (13 October 2016)Google Scholar
  48. 48.
    V.A. Garten, K. Eppinger, D.E. Weiss, Rubber Chem. Technol. 29, 295 (1957)Google Scholar
  49. 49.
    Y. Nakajima, Advanced Tire Mechanics (Springer, Singapore, 2019)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Shinzo Kohjiya
    • 1
  • Atsushi Kato
    • 2
  • Yuko Ikeda
    • 3
  1. 1.Kyoto UniversityKyotoJapan
  2. 2.Department of Automotive AnalysisNISSAN ARC, LTD.YokosukaJapan
  3. 3.Faculty of Molecular Chemistry and Engineering, Center for Rubber Science and TechnologyKyoto Institute of TechnologyKyotoJapan

Personalised recommendations