A Counterfactual Quantum Key Distribution Protocol Based on the Idea of Wheeler’s Delayed-Choice Experiment

  • Nan XiangEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1143)


This paper elaborates the idea of Wheeler’s delayed-choice experiment, analyzes the process of bomb detection based on the idea, and introduces a counterfactual quantum distribution protocol. The protocol can detect the eavesdropping behavior accurately and timely and fundamentally eliminate the eavesdropper’s access to communication information.


Wheeler’s delayed-choice experiment Quantum key distribution 


  1. 1.
    Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)CrossRefGoogle Scholar
  2. 2.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)CrossRefGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, System and Signal Processing, pp. 175–179. IEEE, New York (1984)Google Scholar
  4. 4.
    Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74(24), 4763–4766 (1995)CrossRefGoogle Scholar
  5. 5.
    Kwiat, P.G., White, A., Mitchell, J., Nairz, O., Weihs, G., et al.: High-efficiency quantum interrogation measurements via the quantum Zeno effect. Phys. Rev. Lett. 83(23), 4725–4728 (1999)CrossRefGoogle Scholar
  6. 6.
    Hosten, O., Rakher, M.T., Barreiro, J.T., Peters, N.A., Kwiat, P.G.: Counterfactual quantum computation through quantum interrogation. Nature 439(7079), 949–952 (2006)CrossRefGoogle Scholar
  7. 7.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)CrossRefGoogle Scholar
  8. 8.
    Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)CrossRefGoogle Scholar
  9. 9.
    Noh, T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103(23), 0230501 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Yin, Z.Q., Li, H.W., Chen, W., Han, Z.F., Guo, G.C.: Security of counterfactual quantum cryptography. Phys. Rev. A 82(4), 042335 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  1. 1.Institute of Computer ScienceBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Science and Technology on Information Assurance LaboratotyBeijingChina

Personalised recommendations