Advertisement

Effect of Magnetic Field on the Damping Capability of Ni52.5Mn23.7Ga23.8/Polymer Composites

  • Xiaogang SunEmail author
  • Xiaomin Peng
  • Lian Huang
  • Qian Tang
  • Sheng Liu
Conference paper
  • 4 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1143)

Abstract

The effect of the orientation magnetic field (Hori) and the magnetic field during the damping test (Htest) on the damping capability of 30 vol%Ni52.5Mn23.7Ga23.8/epoxy resin (EP) composites was investigated. Hori did not affect the phase temperatures of Ni52.5Mn23.7Ga23.8/EP composites, but these single-crystal Ni52.5Mn23.7Ga23.8 powders were oriented along their easy magnetization axis (c axis) due to Hori. Damping properties of all Ni52.5Mn23.7Ga23.8/EP composites were much better than that of pure EP when the testing temperature was below the glass transition temperature of EP. Compared with the sample without magnetic field, the internal friction peak of Ni52.5Mn23.7Ga23.8/EP composite was increased about 23, 14, 0% to that with Hori and Htest, with Htest or with Hori, respectively. Htest significantly enhanced the damping capability of Ni52.5Mn23.7Ga23.8/EP because the severe twin-boundary motion was generated from the synergistic effect between the magnetic field and oscillation force. Hori combined with Htest will improve the damping capability of Ni52.5Mn23.7Ga23.8/EP composite, while showing little effect without Htest.

Keywords

Shape memory alloys Ni–Mn–Ga Damping Magnetic field Martensitic transformation 

Notes

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (51671085, 51701070) and the Scientific Research Fund of Hunan Provincial Education Department (14B042).

References

  1. 1.
    Ullakko, K., Huang, J.K., Kantner, C., Ohandley, R.C., Kokorin, V.V.: Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett. 69(13), 1966–1968 (1996)CrossRefGoogle Scholar
  2. 2.
    Gavriljuk, V.G., Soderberg, O., Bliznuk, V.V., Glavatska, N.I., Lindroos, V.K.: Martensitic transformations and mobility of twin boundaries in Ni2MnGa alloys studied by using internal friction. Scripta Mater. 49(8), 803–809 (2003)CrossRefGoogle Scholar
  3. 3.
    Dunand, D.C., Muellner, P.: Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys. Adv. Mater. 23(2), 216–232 (2011)CrossRefGoogle Scholar
  4. 4.
    Feuchtwanger, J., Michael, S., Juang, J., Bono, D., O’Handley, R.C., et al.: Energy absorption in Ni-Mn-Ga-polymer composites. Appl. Phys. 93(10), 8528–8530 (2003)CrossRefGoogle Scholar
  5. 5.
    Scheerbaum, N., Hinz, D., Gutfleisch, O., Mueller, K.H., Schultz, L.: Textured polymer bonded composites with Ni-Mn-Ga magnetic shape memory particles. Acta Mater. 55(8), 2707–2713 (2007)CrossRefGoogle Scholar
  6. 6.
    Feuchtwanger, J., Richard, M.L., Lazpita, P., Gutierrez, J., Barandiaran, J.M., et al.: Stress-induced twin boundary motion in particulate Ni-Mn-Ga/polymer composites. Mater. Sci. Forum 583, 197–212 (2008)CrossRefGoogle Scholar
  7. 7.
    Tian, B., Chen, F., Tong, Y.X., Li, L., Zheng, Y.F.: Bending properties of epoxy resin matrix composites filled with Ni-Mn-Ga ferromagnetic shape memory alloy powders. Mater. Lett. 63(20), 1729–1732 (2009)CrossRefGoogle Scholar
  8. 8.
    Wei, L., He, Y., Liu, Y., Yang, N.: Damping of Ni-Mn-Ga epoxy resin composites. Chin. J. Aeronaut. 26(6), 1596–1605 (2013)CrossRefGoogle Scholar
  9. 9.
    Bing, T., Feng, C., Yunxiang, T., Li, L., Yufeng, Z.: Magnetic field induced strain and damping behavior of Ni-Mn-Ga particles/epoxy resin composite. Alloys Compd. 604, 137–141 (2014)CrossRefGoogle Scholar
  10. 10.
    Lester, B.T., Baxevanis, T., Chemisky, Y., Lagoudas, D.C.: Review and perspectives: shape memory alloy composite systems. Acta Mech. 226(12), 3907–3960 (2015)CrossRefGoogle Scholar
  11. 11.
    Hosoda, H., Takeuchi, S., Inamura, T., Wakashima, K.: Material design and shape memory properties of smart composites composed of polymer and ferromagnetic shape memory alloy particles. Sci. Technol. Adv. Mater. 5(4), 503–509 (2004)CrossRefGoogle Scholar
  12. 12.
    Feuchtwanger, J., Richard, M.L., Tang, Y.J., Berkowitz, A.E., O’Handley, R.C., et al.: Large energy absorption in Ni-Mn-Ga/polymer composites. Appl. Phys. 97(10) (2005)Google Scholar
  13. 13.
    Lahelin, M., Aaltio, I., Heczko, O., Soderberg, O., Ge, Y., et al.: DMA testing of Ni-Mn-Ga/polymer composites. Compos. Part A-Appl. Sci. Manuf. 40(2), 125–129 (2009)CrossRefGoogle Scholar
  14. 14.
    Mahendran, M., Feuchtwanger, J., Techapiesancharoenkij, R., Bono, D., O’Handley, R.C.: Acoustic energy absorption in Ni-Mn-Ga/polymer composites. Magn. Magn. Mater. 323(8), 1098–1100 (2011)CrossRefGoogle Scholar
  15. 15.
    Glock, S., Michaud, V.: Thermal and damping behaviour of magnetic shape memory alloy composites. Smart Mater. Struct. 24(6) (2015)Google Scholar
  16. 16.
    Wang, W.H., Liu, G.D., Wu, G.H.: Magnetically controlled high damping in ferromagnetic Ni52Mn24Ga24 single crystal. Appl. Phys. Lett. 89(10) (2006)Google Scholar
  17. 17.
    Zeng, M., Or, S.W., Chan, H.L.W.: Ultrahigh anisotropic damping in ferromagnetic shape memory Ni-Mn-Ga single crystal. Alloys Compd. 493(1–2), 565–568 (2010)CrossRefGoogle Scholar
  18. 18.
    Sun, X.G., Song, J., Jiang, H., Zhang, X.N., Xie, C.Y.: Damping behavior of polymer composites with high volume fraction of NiMnGa powders. Proc. SPIE 79771G, 1–8 (2011)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2021

Authors and Affiliations

  • Xiaogang Sun
    • 1
    • 2
    Email author
  • Xiaomin Peng
    • 1
  • Lian Huang
    • 1
  • Qian Tang
    • 1
  • Sheng Liu
    • 1
  1. 1.College of Mechanic EngineeringHunan Institute of EngineeringXiangtanChina
  2. 2.Hunan Provincial Key Laboratory of Vehicle Power and Transmission SystemXiangtanChina

Personalised recommendations