Advertisement

Application: Extremely Elongated Shape Of 1I/‘Oumuamua

  • Keisuke SugiuraEmail author
Chapter
  • 8 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

We showed that similar-mass and non-destructive impacts can produce extremely elongated shapes of asteroids. Recently an interstellar object 1I/‘Oumuamua was discovered, and its light curve shows that 1I/‘Oumuamua has the size of about 100 m and an extremely elongated shape with the ratio of intermediate to major axis lengths less than 0.3. In this chapter, we introduce results of our simulations that investigate detailed impact conditions to form such extremely elongated object. The results show that the collisional formation of the extremely elongated shape requires impact velocities less than 40 cm/s, impact angles less than 30 degrees, ratios of impactor mass to target mass larger than 0.5, and friction angles of granular material composing impacting objects larger than 40 degrees. Such low impact velocities are realized in extremely young protoplanetary disks without planetesimals larger than 7 km. Thus, we suggest that 1I/‘Oumuamua came to our solar system from such an extremely young protoplanetary disk.

Keywords

1I/‘Oumuamua Interstellar object Extremely elongated shape Formation environment 

References

  1. L.W. Bandermann, R.D. Wolstencroft, Energy changes in close planetary encounters. Mon. Not. R. Astron. Soc. 152, 377 (1971).  https://doi.org/10.1093/mnras/152.4.377ADSCrossRefGoogle Scholar
  2. M.T. Bannister, M.E. Schwamb, W.C. Fraser, M. Marsset, A. Fitzsimmons, S.D. Benecchi, P. Lacerda, R.E. Pike, J.J. Kavelaars, A.B. Smith, S.O. Stewart, S.-Y. Wang, M.J. Lehner, Col-OSSOS: colors of the interstellar planetesimal 1I/’Oumuamua. Astrophys. J. 851, L38 (2017).  https://doi.org/10.3847/2041-8213/aaa07cADSCrossRefGoogle Scholar
  3. W. Benz, E. Asphaug, Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).  https://doi.org/10.1006/icar.1999.6204ADSCrossRefGoogle Scholar
  4. T. Birnstiel, C.P. Dullemond, F. Brauer, Gas- and dust evolution in protoplanetary disks. Astron. Astrophys. 513, A79 (2010).  https://doi.org/10.1051/0004-6361/200913731ADSCrossRefzbMATHGoogle Scholar
  5. B.T. Bolin, H.A. Weaver, Y.R. Fernandez, C.M. Lisse, D. Huppenkothen, R.L. Jones, M. Jurić, J. Moeyens, C.A. Schambeau, C.T. Slater, Ž. Ivezić, A.J. Connolly, APO time-resolved color photometry of highly elongated interstellar object 1I/’Oumuamua. Astrophys. J. 852, L2 (2018).  https://doi.org/10.3847/2041-8213/aaa0c9ADSCrossRefGoogle Scholar
  6. W.F. Bottke, D.D. Durda, D. Nesvorný, R. Jedicke, A. Morbidelli, D. Vokrouhlický, H. Levison, The fossilized size distribution of the main asteroid belt. Icarus 175, 111–140 (2005).  https://doi.org/10.1016/j.icarus.2004.10.026ADSCrossRefGoogle Scholar
  7. S. Chandrasekhar, Ellipsoidal Figures of Equilibrium (1969)Google Scholar
  8. J.N. Cuzzi, R.C. Hogan, J.M. Paque, A.R. Dobrovolskis, Size-selective concentration of chondrules and other small particles in protoplanetary nebula turbulence. Astrophys. J. 546, 496–508 (2001).  https://doi.org/10.1086/318233ADSCrossRefGoogle Scholar
  9. C. de la Fuente Marcos, R. de la Fuente Marcos, Pole, pericenter, and nodes of the interstellar minor body A/2017 U1. Res. Notes AAS 1, 5 (2017).  https://doi.org/10.3847/2515-5172/aa96b4
  10. G. Domokos, A.Á. Sipos, G.M. Szabó, P.L. Várkonyi, Formation of sharp edges and planar areas of asteroids by polyhedral abrasion. Astrophys. J. 699(1), L13 (2009)ADSCrossRefGoogle Scholar
  11. G. Domokos, A.Á. Sipos, G.M. Szabó, P.L. Várkonyi, Explaining the elongated shape of Oumuamua by the eikonal abrasion model. Res. Notes AAS 1(1), 50 (2017)ADSCrossRefGoogle Scholar
  12. M. Drahus, P. Guzik, W. Waniak, B. Handzlik, S. Kurowski, S. Xu, Tumbling motion of 1I/‘Oumuamua and its implications for the body’s distant past. Nature 2, 407–412 (2018).  https://doi.org/10.1038/s41550-018-0440-1CrossRefGoogle Scholar
  13. J.A. Fernandez, Mass removed by the outer planets in the early solar system. Icarus 34, 173–181 (1978).  https://doi.org/10.1016/0019-1035(78)90134-3ADSCrossRefGoogle Scholar
  14. M. Flock, S. Fromang, N.J. Turner, M. Benisty, 3D radiation nonideal magnetohydrodynamical simulations of the inner rim in protoplanetary disks. Astrophys. J. 835, 230 (2017).  https://doi.org/10.3847/1538-4357/835/2/230ADSCrossRefGoogle Scholar
  15. W.C. Fraser, P. Pravec, A. Fitzsimmons, P. Lacerda, M.T. Bannister, C. Snodgrass, I. Smoli’c, The tumbling rotational state of 1I/‘Oumuamua. Nature 2 (2018).  https://doi.org/10.1038/s41550-018-0398-z
  16. C. Hayashi, Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).  https://doi.org/10.1143/PTPS.70.35ADSCrossRefGoogle Scholar
  17. G.H. Heiken, D.T. Vaniman, B.M. French, Lunar Sourcebook - A User’s Guide to the Moon (1991)Google Scholar
  18. A. Higuchi, E. Kokubo, T. Mukai, Scattering of planetesimals by a planet: formation of comet cloud candidates. Astron. J. 131, 1119–1129 (2006).  https://doi.org/10.1086/498892ADSCrossRefGoogle Scholar
  19. M.J. Holman, P.A. Wiegert, Long-term stability of planets in binary systems. Astron. J. 117, 621–628 (1999).  https://doi.org/10.1086/300695ADSCrossRefGoogle Scholar
  20. S. Ida, Stirring and dynamical friction rates of planetesimals in the solar gravitational field. Icarus 88, 129–145 (1990).  https://doi.org/10.1016/0019-1035(90)90182-9ADSCrossRefGoogle Scholar
  21. S. Ida, J. Makino, Scattering of planetesimals by a protoplanet - slowing down of runaway growth. Icarus 106, 210 (1993).  https://doi.org/10.1006/icar.1993.1167ADSCrossRefGoogle Scholar
  22. M. Ilgner, R.P. Nelson, Turbulent transport and its effect on the dead zone in protoplanetary discs. Astron. Astrophys. 483, 815–830 (2008).  https://doi.org/10.1051/0004-6361:20079307ADSCrossRefGoogle Scholar
  23. A.P. Jackson, D. Tamayo, N. Hammond, M. Ali-Dib, H. Rein, Ejection of rocky and icy material from binary star systems: Implications for the origin and composition of 1I/‘Oumuamua. Mon. Not. R. Astron. Soc. (2018).  https://doi.org/10.1093/mnrasl/sly033CrossRefGoogle Scholar
  24. D. Jewitt, J. Luu, J. Rajagopal, R. Kotulla, S. Ridgway, W. Liu, T. Augusteijn, Interstellar interloper 1I/2017 U1: observations from the NOT and WIYN telescopes. Astrophys. J. 850(2), L36 (2017)ADSCrossRefGoogle Scholar
  25. M. Jutzi, E. Asphaug, The shape and structure of cometary nuclei as a result of low-velocity accretion. Science 348, 1355–1358 (2015).  https://doi.org/10.1126/science.aaa4747ADSCrossRefGoogle Scholar
  26. M.M. Knight, S. Protopapa, M.S.P. Kelley, T.L. Farnham, J.M. Bauer, D. Bodewits, L.M. Feaga, J.M. Sunshine, On the rotation period and shape of the hyperbolic asteroid 1I/’Oumuamua (2017 U1) from its lightcurve. Astrophys. J. 851(2), L31 (2017)ADSCrossRefGoogle Scholar
  27. H. Kobayashi, S. Ida, H. Tanaka, The evidence of an early stellar encounter in Edgeworth Kuiper belt. Icarus 177, 246–255 (2005).  https://doi.org/10.1016/j.icarus.2005.02.017ADSCrossRefGoogle Scholar
  28. K.A. Kretke, D.N.C. Lin, P. Garaud, N.J. Turner, Assembling the building blocks of giant planets around intermediate-mass stars. Astrophys. J. 690, 407–415 (2009).  https://doi.org/10.1088/0004-637X/690/1/407ADSCrossRefGoogle Scholar
  29. Z.M. Leinhardt, D.C. Richardson, T. Quinn, Direct N-body simulations of rubble pile collisions. Icarus 146, 133–151 (2000).  https://doi.org/10.1006/icar.2000.6370ADSCrossRefGoogle Scholar
  30. Z.M. Leinhardt, R.A. Marcus, S.T. Stewart, The formation of the collisional family around the dwarf planet haumea. Astrophys. J. 714, 1789–1799 (2010).  https://doi.org/10.1088/0004-637X/714/2/1789ADSCrossRefGoogle Scholar
  31. K.J. Meech, R. Weryk, M. Micheli, J.T. Kleyna, O.R. Hainaut, R. Jedicke, R.J. Wainscoat, K.C. Chambers, J.V. Keane, A. Petric, L. Denneau, E. Magnier, T. Berger, M.E. Huber, H. Flewelling, C. Waters, E. Schunova-Lilly, S. Chastel, A brief visit from a red and extremely elongated interstellar asteroid. Nature 552, 378–381 (2017).  https://doi.org/10.1038/nature25020ADSCrossRefGoogle Scholar
  32. M. Micheli, D. Farnocchia, K.J. Meech, M.W. Buie, O.R. Hainaut, D. Prialnik, N. Schörghofer, H.A. Weaver, P.W. Chodas, J.T. Kleyna, R. Weryk, R.J. Wainscoat, H. Ebeling, J.V. Keane, K.C. Chambers, D. Koschny, A.E. Petropoulos, Non-gravitational acceleration in the trajectory of 1I/2017 U1 (‘Oumuamua). Nature 559, 223–226 (2018).  https://doi.org/10.1038/s41586-018-0254-4ADSCrossRefGoogle Scholar
  33. T. Michikami, A. Hagermann, T. Kadokawa, A. Yoshida, A. Shimada, S. Hasegawa, A. Tsuchiyama, Fragment shapes in impact experiments ranging from cratering to catastrophic disruption. Icarus264(Supplement C), 316–330 (2016).  https://doi.org/10.1016/j.icarus.2015.09.038
  34. S. Mori, T. Muranushi, S. Okuzumi, S.-I. Inutsuka, Electron heating and saturation of self-regulating magnetorotational instability in protoplanetary disks. Astrophys. J. 849, 86 (2017).  https://doi.org/10.3847/1538-4357/aa8e42ADSCrossRefGoogle Scholar
  35. K. Ohtsuki, G.R. Stewart, S. Ida, Evolution of Planetesimal Velocities Based on Three-Body Orbital Integrations and Growth of Protoplanets. Icarus 155, 436–453 (2002).  https://doi.org/10.1006/icar.2001.6741ADSCrossRefGoogle Scholar
  36. C.W. Ormel, J.N. Cuzzi, Closed-form expressions for particle relative velocities induced by turbulence. Astron. Astrophys. 466, 413–420 (2007).  https://doi.org/10.1051/0004-6361:20066899ADSCrossRefzbMATHGoogle Scholar
  37. C. Pinte, W.R.F. Dent, F. Ménard, A. Hales, T. Hill, P. Cortes, I. de Gregorio-Monsalvo, Dust and gas in the disk of HL Tauri: surface density, dust settling, and dust-to-gas ratio. Astrophys. J. 816, 25 (2016).  https://doi.org/10.3847/0004-637X/816/1/25ADSCrossRefGoogle Scholar
  38. S.N. Raymond, P.J. Armitage, A. Moro-Martín, M. Booth, M.C. Wyatt, J.C. Armstrong, A.M. Mandell, F. Selsis, A.A. West, Debris disks as signposts of terrestrial planet formation. Astron. Astrophys. 530, A62 (2011).  https://doi.org/10.1051/0004-6361/201116456ADSCrossRefGoogle Scholar
  39. S.N. Raymond, P.J. Armitage, D. Veras, E.V. Quintana, T. Barclay, Implications of the interstellar object 1I/‘Oumuamua for planetary dynamics and planetesimal formation. Mon. Not. R. Astron. Soc. 476, 3031–3038 (2018).  https://doi.org/10.1093/mnras/sty468ADSCrossRefGoogle Scholar
  40. D.C. Richardson, Z.M. Leinhardt, H.J. Melosh, W.F. Bottke, Jr., E. Asphaug, Gravitational aggregates: evidence and evolution, 501–515 (2002)Google Scholar
  41. D.C. Richardson, P. Elankumaran, R.E. Sanderson, Numerical experiments with rubble piles: equilibrium shapes and spins. Icarus 173, 349–361 (2005).  https://doi.org/10.1016/j.icarus.2004.09.007ADSCrossRefGoogle Scholar
  42. K. Sugiura, H. Kobayashi, S. Inutsuka, Collisional elongation: possible origin of extremely elongated shape of 1I/‘Oumuamua. Icarus 328, 14–22 (2019).  https://doi.org/10.1016/j.icarus.2019.03.014
  43. K. Sugiura, H. Kobayashi, S. Inutsuka, Toward understanding the origin of asteroid geometries, variety in shapes produced by equal-mass impacts. Astron. Astrophys. 620, A167 (2018).  https://doi.org/10.1051/0004-6361/201833227
  44. S.Z. Takahashi, S.-I. Inutsuka, Two-component secular gravitational instability in a protoplanetary disk: a possible mechanism for creating ring-like structures. Astrophys. J. 794, 55 (2014).  https://doi.org/10.1088/0004-637X/794/1/55ADSCrossRefGoogle Scholar
  45. S.Z. Takahashi, S.-I. Inutsuka, An origin of multiple ring structure and hidden planets in HL Tau: a unified picture by secular gravitational instability. Astron. J. 152, 184 (2016).  https://doi.org/10.3847/0004-6256/152/6/184ADSCrossRefGoogle Scholar
  46. R.T. Tominaga, S.-I. Inutsuka, S.Z. Takahashi, Non-linear development of secular gravitational instability in protoplanetary disks. Publ. Astron. Soc. Japan 70, 3 (2018).  https://doi.org/10.1093/pasj/psx143ADSCrossRefGoogle Scholar
  47. K.J. Walsh, D.C. Richardson, Binary near-earth asteroid formation: rubble pile model of tidal disruptions. Icarus 180(1), 201–216 (2006).  https://doi.org/10.1016/j.icarus.2005.08.015ADSCrossRefGoogle Scholar
  48. S.J. Weidenschilling, Aerodynamics of solid bodies in the solar nebula. Mon. Not. R. Astron. Soc. 180, 57–70 (1977).  https://doi.org/10.1093/mnras/180.1.57ADSCrossRefGoogle Scholar
  49. F.L. Whipple, On certain aerodynamic processes for asteroids and comets, in From Plasma to Planet, ed. by A. Elvius (1972), p. 211Google Scholar
  50. Q.-Z. Ye, Q. Zhang, M.S.P. Kelley, P.G. Brown, 1I/2017 U1 (‘Oumuamua) is hot: imaging, spectroscopy, and search of meteor activity. Astrophys. J. 851(1), L5 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Earth-Life Science InstituteTokyo Institute of TechnologyMeguroJapan

Personalised recommendations