Early Prediction of Brain Tumor Classification Using Convolution Neural Networks

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1192)


Automatic brain tumor classification of tissue types plays a significant task in computer-aided medical diagnosis. In recent years, classification of brain tumors types like meningioma (T1), glioma (T2), and pituitary tumor (T3). Convolution Neural Networks (CNN), which trains the image into increasingly sub-dividing as filter blocks for the fine-tune of feature extraction from each sub-region, exhibits excellent results and successfully used for object detection and classification. In this paper, we present an approach to improve tumor detection and classification performance. Initially, the tumor area is clustered with the fuzzy c-means algorithm for discovering the surrounded tumor tissues and also gives important clues for tumor types. Second, the Canny edge detection applied for the tumor region. Third, the spectral residual for saliency map from the tumor region. Finally, we combine all three areas into one representation for CNN training and testing on a large dataset, which gives accuracies of 91.40%. These experimental results show that the proposed method is realistic and useful for the classification of brain tumors types.


Convolution Neural Networks MRI Classification Brain tumor 


  1. 1.
    Aslam, A., Khan, E., Beg, M.S.: Improved edge detection algorithm for brain tumor segmentation. Procedia Comput. Sci. 58, 430–437 (2015)CrossRefGoogle Scholar
  2. 2.
    Shanthakumar, P., Ganesh Kumar, P.: Computer aided brain tumor detection system using watershed segmentation techniques. Int. J. Imaging Syst. Technol. 25(4), 297–301 (2015)CrossRefGoogle Scholar
  3. 3.
    Natteshan, N.V.S., Angel Arul Jothi, J.: Automatic classification of brain MRI images using SVM and neural network classifiers. In: El-Alfy, E.-S.M., Thampi, S.M., Takagi, H., Piramuthu, S., Hanne, T. (eds.) Advances in Intelligent Informatics. AISC, vol. 320, pp. 19–30. Springer, Cham (2015). Scholar
  4. 4.
    Dandıl, E., Çakıroğlu, M., Ekşi, Z.: Computer-aided diagnosis of malign and benign brain tumors on MR images. In: Bogdanova, A.M., Gjorgjevikj, D. (eds.) ICT Innovations 2014. AISC, vol. 311, pp. 157–166. Springer, Cham (2015). Scholar
  5. 5.
    Yazdani, S., Yusof, R., Karimian, A., Riazi, A.H., Bennamoun, M.: A unified framework for brain segmentation in MR images. Comput. Math. Methods Med. 2015, 829893 (2015) CrossRefGoogle Scholar
  6. 6.
    Nabizadeh, N., Kubat, M.: Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput. Electr. Eng. 45, 286–301 (2015)CrossRefGoogle Scholar
  7. 7.
    Zikic, D., Ioannou, Y., Brown, M. and Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS, pp. 36–39 (2014) Google Scholar
  8. 8.
    Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, winning contribution, pp. 31–35 (2014)Google Scholar
  9. 9.
    Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., Tian, Q.: Discovering discriminative graphlets for aerial image categories recognition. IEEE Trans. Image Process. 22(12), 5071–5084 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018)CrossRefGoogle Scholar
  11. 11.
    Menze, B.H., van Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A generative model for brain tumor segmentation in multi-modal images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part II. LNCS, vol. 6362, pp. 151–159. Springer, Heidelberg (2010). Scholar
  12. 12.
    Gering, D.T., Grimson, W.E.L., Kikinis, R.: Recognizing deviations from normalcy for brain tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002, Part I. LNCS, vol. 2488, pp. 388–395. Springer, Heidelberg (2002). Scholar
  13. 13.
    LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  14. 14.
    Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 437–478. Springer, Heidelberg (2012). Scholar
  15. 15.
    Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  16. 16.
    Zhang, L., Tong, M.H., Marks, T.K., Shan, H., Cottrell, G.W.: SUN: a Bayesian framework for saliency using natural statistics. J. Vis. 8(7), 32–32 (2008)CrossRefGoogle Scholar
  17. 17.
    Rajkumar, R., Arunnehru, J.: A study on convolutional neural networks with active video tubelets for object detection and classification. In: Wang, J., Reddy, G.R.M., Prasad, V.K., Reddy, V.S. (eds.) Soft Computing and Signal Processing. AISC, vol. 898, pp. 107–115. Springer, Singapore (2019). Scholar
  18. 18.
    Arunnehru, J., Chamundeeswari, G., Bharathi, S.P.: Human action recognition using 3D convolutional neural networks with 3D motion cuboids in surveillance videos. Procedia Comput. Sci. 133, 471–477 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringSRM Institute of Science and TechnologyChennaiIndia
  2. 2.Department of Electronics and Communication EngineeringSRM Institute of Science and TechnologyModinagarIndia

Personalised recommendations