Advertisement

Role of Nanostructures in Development of Energy-Efficient Electrochemical Non-enzymatic Glucose Sensors

  • Vijay Kumar AnandEmail author
  • B. Archana
  • Amit Wason
  • G. S. Virdi
  • Rakesh Goyal
Conference paper
  • 14 Downloads
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

There are various complexities involves with enzymatic glucose sensors such as poor shelf life due to the inherent instability of an enzyme, a fabrication complexity included in enzyme immobilization procedures and interference caused by soluble redox mediators. Therefore, research towards enzymeless glucose sensing has increased. Further, the integration of photovoltaic or alternate energy harvesting methods with glucose sensors results in the development of cost-effective and energy-efficient biosensor systems. Continuous technological advancements of novel materials having distinctive nanostructures assist in understanding the fundamentals of enzymeless glucose detection. In this paper, we have discussed the electrochemical method of glucose detection and the role of nanostructures in development of energy-efficient electrochemical non-enzymatic glucose sensors.

Keywords

Non-enzymatic Nanostructures 

Notes

Acknowledgements

The authors are thankful to IKG Punjab Technical University, Kapurthala, Punjab, India and Microelectronics/MEMS R&D Laboratory, Ambala College of Engineering and Applied Research, Ambala, Haryana, India, for providing the necessary resources.

References

  1. 1.
    K.G.M.M. Alberti, P.Z. Zimmet, World Health Organization Consultation, Definition, diagnosis and classification of diabetes mellitus and its complications part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998)CrossRefGoogle Scholar
  2. 2.
    World Health Organization, Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation (2006)Google Scholar
  3. 3.
    K. Ogurtsova, J.D.R.R. Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N.H. Cho, D. Cavan, J.E. Shaw, L.E. Makaroff, IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128, 40–50 (2017)CrossRefGoogle Scholar
  4. 4.
    World Health Organization, Global Report on Diabetes Geneva. Switzerland (2016)Google Scholar
  5. 5.
    Med device tracker Report, Global Diabetes Management Devices Market (Informa, London, 2017)Google Scholar
  6. 6.
    Abbott’s freestyle libre system becomes first CGM to be FDA Cleared for Use Without Fingersticks (2017). http://www.mobihealthnews.com/content/abbotts-freestyle-libre-system-becomes-first-cgm-be-fda-cleared-usewithout-fingersticks
  7. 7.
    FDA approves first continuous glucose monitoring system for adults not requiring blood sample calibration. U.S. FOOD & DRUG Administration (2017). https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm577890.htm
  8. 8.
    S. Ferri, K. Kojima, K. Sode, Review of glucose oxidases and glucose dehydrogenases: a Bird’s eye view of glucose sensing enzymes. J Diabetes. Sci. Technol. 5, 1068–1076 (2011)CrossRefGoogle Scholar
  9. 9.
    S.K. Vashist, D. Zheng, K. Al-Rubeaan, J.H.T. Luong, F.S. Sheu, Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal. Chim. Acta 703, 124–136 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Wilson, A.P.F. Turner, Glucose-oxidase—an ideal enzyme. Biosens. Bioelectron. 7, 165–185 (1992)CrossRefGoogle Scholar
  11. 11.
    J.P. Frias, C.G. Lim, J.M. Ellison, C.M. Montandon, Review of adverse events associated with false glucose readings measured by GDHPQQ- based glucose test strips in the presence of interfering sugars. Diabetes Care 33, 728–729 (2010)CrossRefGoogle Scholar
  12. 12.
    T.G. Schleis, Interference of maltose, icodextrin, galactose, or xylose with some blood glucose monitoring systems. Pharmacotherapy 27, 1313–1321 (2007)CrossRefGoogle Scholar
  13. 13.
    K. Mori, M. Nakajima, K. Kojima, K. Murakami, S. Ferri, K. Sode, Screening of Aspergillus-derived FAD-glucose dehydrogenases from fungal genome database. Biotechnol. Lett. 33, 2255–2263 (2011)CrossRefGoogle Scholar
  14. 14.
    G. Sakai, K. Kojima, K. Mori, Y. Oonishi, K. Sode, Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond. Biotechnol. Lett. 37, 1091–1099 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Yoshida, G. Sakai, K. Mori, K. Kojima, S. Kamitori, K. Sode, Structural analysis of fungus-derived FAD glucose dehydrogenase. Sci. Rep. 5 (2015)Google Scholar
  16. 16.
    D. Pletcher, Electrocatalysis—present and future. J. Appl. Electrochem. 14, 403–415 (1984)CrossRefGoogle Scholar
  17. 17.
    K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5, 1246–1301 (2010)Google Scholar
  18. 18.
    J. Wang, J. Pharm, Amperometric biosensors for clinical and therapeutic drug monitoring: a review. Biomed. Anal. 19, 47–53 (1999)CrossRefGoogle Scholar
  19. 19.
    M.M. Rahman, A.J.S. Ahammad, J.H. Jin, S.J. Ahn, J.J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855–4886 (2010)CrossRefGoogle Scholar
  20. 20.
    L.D. Burke, Premonolayer oxidation and its role in electrocatalysis. Electrochim. Acta 39, 1841–1848 (1994)CrossRefGoogle Scholar
  21. 21.
    S. Ernst, J. Heitbaum, C.H. Hamann, The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE. J. Electroanal. Chem. Interfacial Electrochem. 100, 173–183 (1979)CrossRefGoogle Scholar
  22. 22.
    S. Berchmans, H. Gomathi, G.P. Rao, Electrooxidation of alcohols and sugars catalyzed on a nickel-oxide modified glassy-carbon electrode. J. Electroanal. Chem. 394, 267–270 (1995)CrossRefGoogle Scholar
  23. 23.
    M. Fleischmann, K. Korinek, D. Pletcher, Oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. 31, 39–49 (1971)CrossRefGoogle Scholar
  24. 24.
    J.M. Marioli, T. Kuwana, Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim. Acta 37, 1187–1197 (1992)CrossRefGoogle Scholar
  25. 25.
    K. Kano, M. Torimura, Y. Esaka, M. Goto, T. Ueda, Electrocatalytic oxidation of carbohydrates at copper(ii)-modified electrodes and its application to flow-through detection. J. Electroanal. Chem. 372, 137–143 (1994)CrossRefGoogle Scholar
  26. 26.
    T.R.I. Cataldi, A. Guerrieri, I.G. Casella, E. Desimoni, Study of a cobalt-based surface-modified glassy-carbon electrode—electrocatalytic oxidation of sugars and alditols. Electroanalysis 7, 305–311 (1995)CrossRefGoogle Scholar
  27. 27.
    T.R.I. Cataldi, I.G. Casella, E. Desimoni, T. Rotunno, Cobalt-based glassy-carbon chemically modified electrode for constant-potential amperometric detection of carbohydrates in flow-injection analysis and liquid chromatography. Anal. Chim. Acta 270, 161–171 (1992)CrossRefGoogle Scholar
  28. 28.
    E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013)CrossRefGoogle Scholar
  29. 29.
    J.Y. Chen, B. Lim, E.P. Lee, Y.N. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4, 81–95 (2009)CrossRefGoogle Scholar
  30. 30.
    L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)CrossRefGoogle Scholar
  31. 31.
    J.F. Xie, H. Zhang, S. Li, R.X. Wang, X. Sun, M. Zhou, J.F. Zhou, X.W. Lou, Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 5807–5813 (2013)CrossRefGoogle Scholar
  32. 32.
    P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, M.O. Coppens, Hierarchically structured nanomaterials for electrochemical energy conversion. Angew. Chem. Int. Ed. 55, 122–148 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Zhou, H.L. Wang, S.J. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45, 1273–1307 (2016)CrossRefGoogle Scholar
  34. 34.
    P. Strasser, Free electrons to molecular bonds and back: closing the energetic oxygen reduction (ORR)-Oxygen evolution (OER) cycle using coreshell nanoelectrocatalysts. Accounts Chem. Res. 49, 2658–2668 (2016)CrossRefGoogle Scholar
  35. 35.
    Z. Dasdelen, Y. Yildiz, S. Eris, F. Sen, Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl. Catal. B Environ. 219, 511–516 (2017)CrossRefGoogle Scholar
  36. 36.
    J.P. Giraldo, M.P. Landry, S.M. Faltermeier, T.P. McNicholas, N.M. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J.A. Brew, M.S. Strano, Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014)CrossRefGoogle Scholar
  37. 37.
    J.T. Abrahamson, B. Sempere, M.P. Walsh, J.M. Forman, F. Sen, S. Sen, S.G. Mahajan, G.L.C. Paulus, Q.H. Wang, W. Choi, M.S. Strano, Excess thermo power and the theory of thermo power waves. ACS Nano 7, 6533–6544 (2013)CrossRefGoogle Scholar
  38. 38.
    Y.M. Li, G.A. Somorjai, Nanoscale advances in catalysis and energy applications. Nano Lett. 10, 2289–2295 (2010)CrossRefGoogle Scholar
  39. 39.
    A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, Dye sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)CrossRefGoogle Scholar
  40. 40.
    N.M. Lverson, P.W. Barone, M. Shandell, L.J. Trudel, S. Sen, F. Sen, V. Ivanov, E. Atolia, E. Farias, T.P. McNicholas, N. Reuel, N.M.A. Parry, G.N. Wogan, M.S. Strano, In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8, 873–880 (2013)CrossRefGoogle Scholar
  41. 41.
    Y. Koskun, A. Savk, B. Sen, F. Sen, Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta 1010, 37–43 (2018)CrossRefGoogle Scholar
  42. 42.
    G. Baskaya, Y. Yildiz, A. Savk, T.O. Okyay, S. Eris, H. Sert, F. Sen, Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron. 91, 728–733 (2017)CrossRefGoogle Scholar
  43. 43.
    C. Yang, M.E. Denno, P. Pyakurel, B.J. Venton, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal. Chim. Acta 887, 17–37 (2015)CrossRefGoogle Scholar
  44. 44.
    C.Z. Zhu, G.H. Yang, H. Li, D. Du, Y.H. Lin, Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87, 230–249 (2015)CrossRefGoogle Scholar
  45. 45.
    D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors: a review. Anal. Chim. Acta 1033, 1–34 (2018)CrossRefGoogle Scholar
  46. 46.
    S. Park, T.D. Chung, H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem. 75, 3046–3049 (2003)CrossRefGoogle Scholar
  47. 47.
    S. Park, Y.J. Song, J.H. Han, H. Boo, T.D. Chung, Structural and electrochemical features of 3D nanoporous platinum electrodes. Electrochim. Acta 55, 2029–2035 (2010)CrossRefGoogle Scholar
  48. 48.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)Google Scholar
  49. 49.
    J.H. Bae, J.H. Han, D. Han, T.D. Chung, Effects of adsorption and confinement on nanoporous electrochemistry. Faraday Discuss. 164, 361–376 (2013)CrossRefGoogle Scholar
  50. 50.
    J.H. Bae, Y.R. Kim, R.S. Kim, T.D. Chung, Enhanced electrochemical reactions of 1,4-benzoquinone at nanoporous electrodes. Phys. Chem. Chem. Phys. 15, 10645–10653 (2013)CrossRefGoogle Scholar
  51. 51.
    J.H. Han, J.H. Bae, D. Han, T.D. Chung, Confined molecular dynamics for suppressing kinetic loss in sugar fuel cell. Electrochim. Acta 187, 457–464 (2016)CrossRefGoogle Scholar
  52. 52.
    M. Seo, J.H. Bae, D.W. Hwang, B. Kwak, J. Yun, S.Y. Lim, T.D. Chung, Catalytic electron transfer at nanoporous indium tin oxide electrodes. Electrochim. Acta 258, 90–97 (2017)CrossRefGoogle Scholar
  53. 53.
    S.H. Kim, J.B. Choi, Q.N. Nguyen, J.M. Lee, S. Park, T.D. Chung, J.Y. Byun, Nanoporous platinum thin films synthesized by electrochemical dealloying for nonenzymatic glucose detection. Phys. Chem. Chem. Phys. 15, 5782–5787 (2013)CrossRefGoogle Scholar
  54. 54.
    S. Park, H.C. Kim, T.D. Chung, Electrochemical analysis based on nanoporous structures. Analyst 137, 3891–3903 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Vijay Kumar Anand
    • 1
    • 2
    Email author
  • B. Archana
    • 2
  • Amit Wason
    • 2
  • G. S. Virdi
    • 1
  • Rakesh Goyal
    • 1
  1. 1.IKG Punjab Technical UniversityKapurthalaIndia
  2. 2.Microelectronics/MEMS R&D Laboratory, ECE DepartmentAmbala College of Engineering and Applied ResearchAmbalaIndia

Personalised recommendations