Advertisement

Overview of Heat Transfer Augmentation Techniques for Parabolic Solar Concentrator Receiver

  • Milind S. PatilEmail author
  • Sanjay Pratapsingh Shekhawat
Conference paper
  • 12 Downloads
Part of the Springer Proceedings in Energy book series (SPE)

Abstract

Solar energy is an alternative to conventional resources of energy. Among the many applications, solar parabolic trough collector is an application that receives heat from the radiation of the sun. Such energy is an alternative way for many rural applications: solar cooker, water pumping, water heating, solar driers, etc. Parabolic trough collector consists of the collector of a paraboloid shape and mounted with the mirrors to reflect and concentrate the solar radiation and focus the same over the receiver/absorber. This heat energy is absorbed by the heat transfer fluid inside the receiver. Such energy also converts water into steam and usually used to drive conventional electrical generators. Receiver heat loss by the mode of convection and radiation is the major cause of lower thermal efficiency. This is why it is essential to study the methods for enhancement of the heat transfer in the parabolic trough receiver. This study focused on the review and feasibility of various heat transfer augmentation techniques for parabolic trough collector receiver/absorber. Study from various publications considers various techniques that are being used by many researchers; this includes use of evacuated receivers, inserts, porous disk, fins, nanofluids, various types of inserts, etc. It is observed that with the use of insert heat transfer augmentation was reported as the highest; however, few of the insert types are yet not used.

Keywords

Solar energy Collector Receiver Heat loss 

References

  1. 1.
    O.A. Jaramillo, M. Borunda, K.M. Velazquez-Lucho, M. Robles, Parabolic trough solar collector for low enthalpy processes: an analysis of the efficiency enhancement by using twisted tape inserts. Renew Energy 93, 125–141 (2016).  https://doi.org/10.1016/j.renene.2016.02.046CrossRefGoogle Scholar
  2. 2.
    O.A. Jaramillo, E. Venegas-Reyes, J.O. Aguilar, R. Castrejón-García, F. Sosa-Montemayor, Parabolic trough concentrators for low enthalpy processes. Renew Energy 60, 529–539 (2013).  https://doi.org/10.1016/j.renene.2013.04.019CrossRefGoogle Scholar
  3. 3.
    J. Macedo-Valencia, J. Ramírez-Ávila, R. Acosta, O.A. Jaramillo, J.O. Aguilar, Design, construction and evaluation of parabolic trough collector as demonstrative prototype. Energy Procedia 57, 989–998 (2014). http://dx.doi.org/10.1016/j.egypro.2014.10.082
  4. 4.
    V.C.P. Filho, A.B. De Sá, J.C. Passos, S. Colle, Experimental and numerical analysis of thermal losses of a parabolic trough solar collector. Energy Procedia 57, 381–390 (2014).  https://doi.org/10.1016/j.egypro.2014.10.191CrossRefGoogle Scholar
  5. 5.
    T. Richert, K. Riffelmann, P. Nava, The influence of solar field inlet and outlet temperature on the cost of electricity in a molten salt parabolic trough power plant. Energy Procedia 69, 1143–1151 (2015).  https://doi.org/10.1016/j.egypro.2015.03.184CrossRefGoogle Scholar
  6. 6.
    H. Jafari Mosleh, S.J. Mamouri, M.B. Shafii, Sima A. Hakim, A new desalination system using a combination of heat pipe, evacuated tube and parabolic through collector. Energy Convers. Manag. 99, 141–150 (2015).  https://doi.org/10.1016/j.enconman.2015.04.028CrossRefGoogle Scholar
  7. 7.
    J.L. Bouvier, G. Michaux, P. Salagnac, T. Kientz, D. Rochier, Experimental study of a micro combined heat and power system with a solar parabolic trough collector coupled to a steam Rankine cycle expander. Sol. Energy 134, 180–192 (2016).  https://doi.org/10.1016/j.solener.2016.04.028CrossRefGoogle Scholar
  8. 8.
    S. Toghyani, E. Baniasadi, E. Afshari, Thermodynamic analysis and optimization of an integrated Rankine power cycle and nano-fluid based parabolic trough solar collector. Energy Convers. Manag. 121, 93–104 (2016).  https://doi.org/10.1016/j.enconman.2016.05.029CrossRefGoogle Scholar
  9. 9.
    M. Mussard, O.J. Nydal, Influence of solar tracking inaccuracy and sun rays modeling on the efficiency of a small-scale parabolic trough. Energy Procedia 57, 1508–1515 (2014).  https://doi.org/10.1016/j.egypro.2014.10.143CrossRefGoogle Scholar
  10. 10.
    F. Wang, H. Feng, J. Zhao, W. Li, F. Zhang, R. Liu, Performance assessment of solar assisted absorption heat pump system with parabolic trough collectors. Energy Procedia 70, 529–536 (2015).  https://doi.org/10.1016/j.egypro.2015.02.157CrossRefGoogle Scholar
  11. 11.
    Z.D. Cheng, Y.L. He, F.Q. Cui, R.J. Xu, Y.B. Tao, Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Sol. Energy 86, 1770–1784 (2012).  https://doi.org/10.1016/j.solener.2012.02.039CrossRefGoogle Scholar
  12. 12.
    M. Balghouthi, A.B.H. Ali, S.E. Trabelsi, A. Guizani, Optical and thermal evaluations of a medium temperature parabolic trough solar collector used in a cooling installation. Energy Convers Manag. 86, 1134–1146 (2014). http://dx.doi.org/10.1016/j.enconman.2014.06.095
  13. 13.
    O. Kizilkan, A. Kabul, I. Dincer, Development and performance assessment of a parabolic trough solar collector-based integrated system for an ice-cream factory. Energy 100, 167–176 (2016).  https://doi.org/10.1016/j.energy.2016.01.098CrossRefGoogle Scholar
  14. 14.
    M. Larcher, M. Rommel, A. Bohren, E. Frank, S. Minder, Characterization of a parabolic trough collector for process heat applications. Energy Procedia 57, 2804–2811 (2014).  https://doi.org/10.1016/j.egypro.2014.10.313CrossRefGoogle Scholar
  15. 15.
    R. Bigoni, S. Kötzsch, S. Sorlini, T. Egli, Solar water disinfection by a parabolic trough concentrator (PTC): flow-cytometric analysis of bacterial inactivation. J. Clean. Prod. 67, 62–71 (2014).  https://doi.org/10.1016/j.jclepro.2013.12.014CrossRefGoogle Scholar
  16. 16.
    D. Del Col, M. Bortolato, A. Padovan, M, Quaggia, Experimental and numerical study of a parabolic trough linear CPVT system. Energy Procedia 57, 255–1164 (2014). http://dx.doi.org/10.1016/j.egypro.2014.10.030
  17. 17.
    F. Calise, A. Palombo, L. Vanoli, A finite-volume model of a parabolic trough photovoltaic/thermal collector: energetic and exergetic analyses. Energy 46, 283–294 (2012).  https://doi.org/10.1016/j.energy.2012.08.021CrossRefGoogle Scholar
  18. 18.
    S.M. Akbarimoosavi, M. Yaghoubi, 3D thermal-structural analysis of an absorber tube of a parabolic trough collector and the effect of tube deflection on optical efficiency. Energy Procedia 49, 2433–2443 (2013).  https://doi.org/10.1016/j.egypro.2014.03.258CrossRefGoogle Scholar
  19. 19.
    Z.Y. Li, Z. Huang, W.Q. Tao, Three-dimensional numerical study on turbulent mixed convection in parabolic trough solar receiver tube. Energy Procedia 75, 462–466 (2015).  https://doi.org/10.1016/j.egypro.2015.07.422CrossRefGoogle Scholar
  20. 20.
    Z.-D. Cheng, Y.-L. He, K. Wang, B.-C. Du, F.Q. Cui, A detailed parameter study on the comprehensive characteristics and performance of a parabolic trough solar collector system. Appl. Therm. Eng. 63, 278–289 (2014).  https://doi.org/10.1016/j.applthermaleng.2013.11.011CrossRefGoogle Scholar
  21. 21.
    Z.D. Cheng, Y.L. He, F.Q. Cui, Numerical study of heat transfer enhancement by unilateral longitudinal vortex generators inside parabolic trough solar receivers. Int. J. Heat Mass Transf. 55, 5631–5641 (2012).  https://doi.org/10.1016/j.ijheatmasstransfer.2012.05.057CrossRefGoogle Scholar
  22. 22.
    H. Al-Ansary, O. Zeitoun, Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector. Sol. Energy 85, 3036–3045 (2011).  https://doi.org/10.1016/j.solener.2011.09.002CrossRefGoogle Scholar
  23. 23.
    Y.-L. He, J. Xiao, Z.-D. Cheng, Y.-B. Tao, A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renew Energy 36, 976–985 (2011).  https://doi.org/10.1016/j.renene.2010.07.017CrossRefGoogle Scholar
  24. 24.
    Y. Wang, Q. Liu, J. Lei, H. Jin, A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid. Appl. Therm. Eng. 70, 462–476 (2014).  https://doi.org/10.1016/j.applthermaleng.2014.05.051CrossRefGoogle Scholar
  25. 25.
    Y. Wang, J. Xu, Q. Liu, Y. Chen, H. Liu, Performance analysis of a parabolic trough solar collector using Al2O3/synthetic oil nanofluid. Appl. Therm. Eng. 107, 469–478 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.06.170CrossRefGoogle Scholar
  26. 26.
    S. Meiser, S. Schneider, E. Lüpfert, B. Schiricke, R. Pitz-Paal, Evaluation and assessment of gravity load on mirror shape and focusing quality of parabolic trough solar mirrors using finite-element analysis. Appl. Energy (2015).  https://doi.org/10.1016/j.apenergy.2016.04.045CrossRefGoogle Scholar
  27. 27.
    M. Andre, M. Mier-Torrecilla, R. Wüchner, Numerical simulation of wind loads on a parabolic trough solar collector using lattice Boltzmann and finite element methods. J. Wind Eng. Ind. Aerodyn. 146, 185–194 (2015).  https://doi.org/10.1016/j.jweia.2015.08.010CrossRefGoogle Scholar
  28. 28.
    Y. Wang, Q. Liu, J. Lei, H. Jin, Performance analysis of a parabolic trough solar collector with non-uniform solar flux conditions. Int. J. Heat Mass Transf. 82, 236–249 (2015).  https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.055CrossRefGoogle Scholar
  29. 29.
    S. Meiser, E. Lüpfert, B. Schiricke, R. Pitz-Paal, Conversion of parabolic trough mirror shape results measured in different laboratory setups. Sol. Energy (2015).  https://doi.org/10.1016/j.solener.2014.09.021CrossRefGoogle Scholar
  30. 30.
    E. Kaloudis, E. Papanicolaou, V. Belessiotis, Numerical simulations of a parabolic trough solar collector with nanofluid using a two-phase model. Renew Energy 97, 218–229 (2016).  https://doi.org/10.1016/j.renene.2016.05.046CrossRefGoogle Scholar
  31. 31.
    A.M. de Oliveira Siqueira, P.E.N. Gomes, L. Torrezani, E.O. Lucas, G.M. da Cruz Pereira, Heat transfer analysis and modeling of a parabolic trough solar collector: an analysis. Energy Procedia 57, 401–410 (2014). http://dx.doi.org/10.1016/j.egypro.2014.10.193
  32. 32.
    H. Liang, S. You, H. Zhang, Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors. Energy 96, 37–47 (2016).  https://doi.org/10.1016/j.energy.2015.12.050CrossRefGoogle Scholar
  33. 33.
    Z.D. Cheng, Y.L. He, F.Q. Cui, B.C. Du, Z.J. Zheng, Y. Xu, Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray-tracing optical model. Appl. Energy 115, 559–572 (2014).  https://doi.org/10.1016/j.apenergy.2013.11.001CrossRefGoogle Scholar
  34. 34.
    Y. Marif, H. Benmoussa, H. Bouguettaia, M.M. Belhadj, M. Zerrouki, Numerical simulation of solar parabolic trough collector performance in the Algeria Saharan region. Energy Convers. Manag. 85, 521–529 (2014).  https://doi.org/10.1016/j.enconman.2014.06.002CrossRefGoogle Scholar
  35. 35.
    A.M.I. Mohamed, N.A. El-Minshawy, Theoretical investigation of solar humidification dehumidification desalination system using parabolic trough concentrators. Energy Convers. Manag. 52, 3112–3119 (2011).  https://doi.org/10.1016/j.enconman.2011.04.026CrossRefGoogle Scholar
  36. 36.
    L. Zhang, M.C. Yang, Y.Z. Zhu, H.J. Chen, Numerical study and optimization of mirror gap effect on wind load on parabolic trough solar collectors. Energy Procedia 69, 233–241 (2015).  https://doi.org/10.1016/j.egypro.2015.03.027CrossRefGoogle Scholar
  37. 37.
    Z.-D. Cheng, Y.-L. He, B.-C. Du, K. Wang, Q. Liang, Geometric optimization on optical performance of parabolic trough solar collector systems using particle swarm optimization algorithm. Appl. Energy 148, 282–293 (2015).  https://doi.org/10.1016/j.apenergy.2015.03.079CrossRefGoogle Scholar
  38. 38.
    S. Caron, M. Röger, Modelling simulation and identification of heat loss mechanisms for parabolic trough receivers installed in concentrated solar power plants. IFAC Proc 48, 372–377 (2015). http://dx.doi.org/10.1016/j.ifacol.2015.05.058
  39. 39.
    R. Silva, M. Pérez, M. Berenguel, L. Valenzuela, E. Zarza, Uncertainty and global sensitivity analysis in the design of parabolic-trough direct steam generation plants for process heat applications. Appl. Energy 121, 233–244 (2014).  https://doi.org/10.1016/j.apenergy.2014.01.095CrossRefGoogle Scholar
  40. 40.
    Q. Liu, M. Yang, J. Lei, H. Jin, Z. Gao, Y. Wang, Modeling and optimizing parabolic trough solar collector systems using the least squares support vector machine method. Sol. Energy 86, 1973–1980 (2012).  https://doi.org/10.1016/j.solener.2012.01.026CrossRefGoogle Scholar
  41. 41.
    Y.B. Tao, Y.L. He, Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube. Sol. Energy 84, 1863–1872 (2010).  https://doi.org/10.1016/j.solener.2010.07.012CrossRefGoogle Scholar
  42. 42.
    M. Biencinto, L. González, E. Zarza, L.E. Díez, J. Muñoz-Antón, Performance model and annual yield comparison of parabolic-trough solar thermal power plants with either nitrogen or synthetic oil as heat transfer fluid. Energy Convers. Manag. 87, 238–249 (2014).  https://doi.org/10.1016/j.enconman.2014.07.017CrossRefGoogle Scholar
  43. 43.
    T.E. Boukelia, O. Arslan, M.S. Mecibah, ANN-based optimization of a parabolic trough solar thermal power plant. Appl. Therm. Eng. 107, 1210–1218 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.07.084CrossRefGoogle Scholar
  44. 44.
    M. Ashouri, A.M. Khoshkar Vandani, M. Mehrpooya, M.H. Ahmadi, A. Abdollahpour, Techno-economic assessment of a Kalina cycle driven by a parabolic Trough solar collector. Energy Convers. Manag. 105, 1328–1339 (2015).  https://doi.org/10.1016/j.enconman.2015.09.015CrossRefGoogle Scholar
  45. 45.
    Y.-L. He, D.-H. Mei, W.-Q. Tao, W.-W. Yang, H.-L. Liu, Simulation of the parabolic trough solar energy generation system with Organic Rankine Cycle. Appl. Energy 97, 630–641 (2012).  https://doi.org/10.1016/j.apenergy.2012.02.047CrossRefGoogle Scholar
  46. 46.
    M. Borunda, O.A. Jaramillo, R. Dorantes, A. Reyes, Organic rankine cycle coupling with a parabolic trough solar power plant for cogeneration and industrial processes. Renew Energy 86, 651–663 (2016).  https://doi.org/10.1016/j.renene.2015.08.041CrossRefGoogle Scholar
  47. 47.
    Z.D. Cheng, Y.L. He, J. Xiao, Y.B. Tao, R.J. Xu, Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. Int Commun Heat Mass Transf 37, 782–787 (2010).  https://doi.org/10.1016/j.icheatmasstransfer.2010.05.002CrossRefGoogle Scholar
  48. 48.
    J. Paetzold, S. Cochard, A. Vassallo, D.F. Fletcher, Wind engineering analysis of parabolic trough solar collectors: the effects of varying the trough depth. J. Wind Eng. Ind. Aerodyn. 135, 118–128 (2014).  https://doi.org/10.1016/j.jweia.2014.10.017CrossRefGoogle Scholar
  49. 49.
    S.A. Kalogirou, A detailed thermal model of a parabolic trough collector receiver. Energy 48, 298–306 (2012).  https://doi.org/10.1016/j.energy.2012.06.023CrossRefGoogle Scholar
  50. 50.
    A. Maccari, M. Montecchi, An optical profilometer for the characterisation of parabolic trough solar concentrators. Sol. Energy 81, 185–194 (2007).  https://doi.org/10.1016/j.solener.2006.04.004CrossRefGoogle Scholar
  51. 51.
    A. Trad, M.A. Ait Ali, Determination of the optimum design through different funding scenarios for future parabolic trough solar power plant in Algeria. Energy Convers. Manag. 91, 267–279 (2015).  https://doi.org/10.1016/j.enconman.2014.12.013CrossRefGoogle Scholar
  52. 52.
    G.C. Bakos, Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement. Renew. Energy 31, 2411–2421 (2006).  https://doi.org/10.1016/j.renene.2005.11.008CrossRefGoogle Scholar
  53. 53.
    F.A. Al-Sulaiman, F. Hamdullahpur, I. Dincer, Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production. Renew. Energy 48, 161–172 (2012).  https://doi.org/10.1016/j.renene.2012.04.034CrossRefGoogle Scholar
  54. 54.
    K.S. Reddy, K.R. Kumar, Solar collector field design and viability analysis of standalone parabolic trough power plants for Indian conditions. Energy. Sustain. Dev. 16, 456–470 (2012).  https://doi.org/10.1016/j.esd.2012.09.003CrossRefGoogle Scholar
  55. 55.
    G. Kumaresan, R. Sridhar, R. Velraj, Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy 47, 395–402 (2012).  https://doi.org/10.1016/j.energy.2012.09.036CrossRefGoogle Scholar
  56. 56.
    K.S. Reddy, K. Ravi Kumar, C.S. Ajay, Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector. Renew. Energy 77, 308–319 (2015).  https://doi.org/10.1016/j.renene.2014.12.016CrossRefGoogle Scholar
  57. 57.
    F.A. Al-Sulaiman, Energy and sizing analyses of parabolic trough solar collector integrated with steam and binary vapor cycles. Energy 58, 561–570 (2013).  https://doi.org/10.1016/j.energy.2013.05.020CrossRefGoogle Scholar
  58. 58.
    I.H. Yilmaz, M.S. Söylemez, Thermo-mathematical modeling of parabolic trough collector. Energy Convers. Manag. 88, 768–784 (2014).  https://doi.org/10.1016/j.enconman.2014.09.031CrossRefGoogle Scholar
  59. 59.
    J.H. Peterseim, A. Tadros, U. Hellwig, S. White, Increasing the efficiency of parabolic trough plants using thermal oil through external superheating with biomass. Energy Convers. Manag. 77, 784–793 (2014).  https://doi.org/10.1016/j.enconman.2013.10.022CrossRefGoogle Scholar
  60. 60.
    T. Vogel, G. Oeljeklaus, K. Gorner, J. Dersch, T. Polklas, Hybridization of parabolic trough power plants with natural gas. Energy Procedia 49, 1238–1247 (2013).  https://doi.org/10.1016/j.egypro.2014.03.133CrossRefGoogle Scholar
  61. 61.
    M. Alguacil, C. Prieto, A. Rodriguez, J. Lohr, Direct steam generation in parabolic trough collectors. Energy Procedia 49, 21–29 (2013).  https://doi.org/10.1016/j.egypro.2014.03.003CrossRefGoogle Scholar
  62. 62.
    C. Ramos, J. Beltran, R. Ramirez, Advances on the development of the parabolic trough technology in Mexico. Energy Procedia 57, 2090–2097 (2014).  https://doi.org/10.1016/j.egypro.2014.10.174CrossRefGoogle Scholar
  63. 63.
    D.H. Lobón, L. Valenzuela, Impact of pressure losses in small-sized parabolic-trough collectors for direct steam generation. Energy 61, 502–512 (2013).  https://doi.org/10.1016/j.energy.2013.08.049CrossRefGoogle Scholar
  64. 64.
    T.E. Boukelia, M.S. Mecibah, B.N. Kumar, K.S. Reddy, Investigation of solar parabolic trough power plants with and without integrated TES (thermal energy storage) and FBS (fuel backup system) using thermic oil and solar salt. Energy 88, 292–303 (2015).  https://doi.org/10.1016/j.energy.2015.05.038CrossRefGoogle Scholar
  65. 65.
    H. Qu, M. Wang, Experimental study of a parabolic trough medium temperature solar thermal system. Energy Procedia 70, 504–509 (2015).  https://doi.org/10.1016/j.egypro.2015.02.154CrossRefGoogle Scholar
  66. 66.
    N. Luo, G. Yu, H. Hou, Y. Yang, Dynamic modeling and simulation of parabolic trough solar system. Energy Procedia 69, 1344–1348 (2015).  https://doi.org/10.1016/j.egypro.2015.03.137CrossRefGoogle Scholar
  67. 67.
    A. Almasabi, A. Alobaidli, T.J. Zhang, Transient characterization of multiple parabolic trough collector loops in a 100 MW CSP plant for solar energy harvesting. Energy Procedia 69, 24–33 (2015).  https://doi.org/10.1016/j.egypro.2015.03.004CrossRefGoogle Scholar
  68. 68.
    J.L. Bouvier, G. Michaux, P. Salagnac, F. Nepveu, D. Rochier, T. Kientz, Experimental characterisation of a solar parabolic trough collector used in a micro-CHP (microcogeneration) system with direct steam generation. Energy 83, 474–485 (2015).  https://doi.org/10.1016/j.energy.2015.02.050CrossRefGoogle Scholar
  69. 69.
    A. Mwesigye, Z. Huan, T. Bello-Ochende, J.P. Meyer, Influence of optical errors on the thermal and thermodynamic performance of a solar parabolic trough receiver. Sol. Energy 135, 703–718 (2016).  https://doi.org/10.1016/j.solener.2016.06.045CrossRefGoogle Scholar
  70. 70.
    S. Caron, M. Röger, In-situ heat loss measurements of parabolic trough receivers based on transient infrared thermography. Sol. Energy 135, 111–121 (2016).  https://doi.org/10.1016/j.solener.2016.05.033CrossRefGoogle Scholar
  71. 71.
    R. López-Martín, L. Valenzuela, On-site comparison of flowmeters installed in a parabolic-trough solar collector test facility. Meas. J. Int. Meas. Confed. 92, 271–278 (2016).  https://doi.org/10.1016/j.measurement.2016.06.033CrossRefGoogle Scholar
  72. 72.
    M. Chafie, M.F. Ben Aissa, S. Bouadila, M. Balghouthi, A. Farhat, A. Guizani, Experimental investigation of parabolic trough collector system under Tunisian climate: design, manufacturing and performance assessment. Appl. Therm. Eng. 101, 273–283 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.02.073CrossRefGoogle Scholar
  73. 73.
    W.A.K. Al-Maliki, F. Alobaid, V. Kez, B. Epple, Modelling and dynamic simulation of a parabolic trough power plant. J. Process Control 39, 123–138 (2016).  https://doi.org/10.1016/j.jprocont.2016.01.002CrossRefGoogle Scholar
  74. 74.
    A. De Risi, M. Milanese, D. Laforgia, Modelling and optimization of transparent parabolic trough collector based on gas-phase nanofluids. Renew. Energy 58, 134–139 (2013).  https://doi.org/10.1016/j.renene.2013.03.014CrossRefGoogle Scholar
  75. 75.
    A. Marcos et al., Heat transfer analysis and modeling of a parabolic trough solar collector: an analysis. Energy Procedia 57, 401–410 (2014)CrossRefGoogle Scholar
  76. 76.
    S. Khanna, V. Sharma, S. Singh, S.B. Kedare, Explicit expression for temperature distribution of receiver of parabolic trough concentrator considering bimetallic absorber tube. Appl. Therm. Eng. 103, 323–332 (2016).  https://doi.org/10.1016/j.applthermaleng.2016.04.110CrossRefGoogle Scholar
  77. 77.
    E. Bellos, C. Tzivanidis, K.A. Antonopoulos, G. Gkinis, Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew. Energy 94, 213–222 (2016).  https://doi.org/10.1016/j.renene.2016.03.062CrossRefGoogle Scholar
  78. 78.
    W. Fuqiang, T. Zhexiang, G. Xiangtao, T. Jianyu, H. Huaizhi, L. Bingxi, Heat transfer performance enhancement and thermal strain restrain of tube receiver for para-bolic trough solar collector by using asymmetric outward convex corrugated tube. Energy 114, 275–92 (2016). https://dx.doi.org/10.1016/j.energy.2016.08.013CrossRefGoogle Scholar
  79. 79.
    Z. Huang, G.L. Yu, Z.Y. Li, W.Q. Tao, Numerical study on heat transfer enhancement in a receiver tube of parabolic trough solar collector with dimples, protrusions and helical fins. Energy Procedia 69, 1306–1316 (2015).  https://doi.org/10.1016/j.egypro.2015.03.149CrossRefGoogle Scholar
  80. 80.
    A. Mwesigye, T. Bello-Ochende, J.P. Meyer, Multi-objective and thermodynamic optimisation of a parabolic trough receiver with perforated plate inserts. Appl. Therm. Eng. 77, 42–56 (2015).  https://doi.org/10.1016/j.applthermaleng.2014.12.018CrossRefGoogle Scholar
  81. 81.
    L. Zhang, Z. Yu, L. Fan, W. Wang, H. Chen, Y. Hu et al., An experimental investigation of the heat losses of a U-type solar heat pipe receiver of a parabolic trough collector-based natural circulation steam generation system. Renew. Energy 57, 262–268 (2013).  https://doi.org/10.1016/j.renene.2013.01.029CrossRefGoogle Scholar
  82. 82.
    J. Li, Z. Wang, J. Li, D. Lei, Vacuum reliability analysis of parabolic trough receiver. Sol. Energy Mater. Sol. Cells 105, 302–308 (2012).  https://doi.org/10.1016/j.solmat.2012.06.034CrossRefGoogle Scholar
  83. 83.
    H. Hong, Q. Liu, H. Jin, Operational performance of the development of a 15 kW parabolic trough mid-temperature solar receiver/reactor for hydrogen production. Appl. Energy 90, 137–141 (2012).  https://doi.org/10.1016/j.apenergy.2011.04.050CrossRefGoogle Scholar
  84. 84.
    S. Peng, H. Hong, H. Jin, Z. Zhang, A new rotatable-axis tracking solar parabolic trough collector for solar-hybrid coal-fired power plants. Sol. Energy 98, 492–502 (2013).  https://doi.org/10.1016/j.solener.2013.09.039CrossRefGoogle Scholar
  85. 85.
    D. Lei, Q. Li, Z. Wang, J. Li, J. Li, An experimental study of thermal characterization of parabolic trough receivers. Energy Convers. Manag. 69, 107–115 (2013).  https://doi.org/10.1016/j.enconman.2013.02.002CrossRefGoogle Scholar
  86. 86.
    A. Mwesigye, T. Bello-Ochende, J.P. Meyer, Heat transfer and thermodynamic performance of a parabolic trough receiver with centrally placed perforated plate inserts. Appl. Energy 136, 989–1003 (2014).  https://doi.org/10.1016/j.apenergy.2014.03.037CrossRefGoogle Scholar
  87. 87.
    X. Song, G. Dong, F. Gao, X. Diao, L. Zheng, F. Zhou, A numerical study of parabolic trough receiver with nonuniform heat flux and helical screw-tape inserts. Energy 77, 771–782 (2014).  https://doi.org/10.1016/j.energy.2014.09.049CrossRefGoogle Scholar
  88. 88.
    X. Xiao, P. Zhang, D.D. Shao, M. Li, Experimental and numerical heat transfer analysis of a V-cavity absorber for linear parabolic trough solar collector. Energy Convers. Manag. 86, 49–59 (2014).  https://doi.org/10.1016/j.enconman.2014.05.001CrossRefGoogle Scholar
  89. 89.
    Z. Wu, D. Lei, G. Yuan, J. Shao, Y. Zhang, Z. Wang, Structural reliability analysis of parabolic trough receivers. Appl. Energy 123, 232–241 (2014).  https://doi.org/10.1016/j.apenergy.2014.02.068CrossRefGoogle Scholar
  90. 90.
    R.V. Padilla, A. Fontalvo, G. Demirkaya, A. Martinez, A.G. Quiroga, Exergy analysis of parabolic trough solar receiver. Appl. Therm. Eng. 67, 579–586 (2014).  https://doi.org/10.1016/j.applthermaleng.2014.03.053CrossRefGoogle Scholar
  91. 91.
    D.R. Waghole, R.M. Warkhedkar, V.S. Kulkarni, R.K. Shrivastva, Experimental investigations on heat transfer and friction factor of silver nanofliud in absorber/receiver of parabolic trough collector with twisted tape inserts. Energy Procedia 45, 558–567 (2014).  https://doi.org/10.1016/j.egypro.2014.01.060CrossRefGoogle Scholar
  92. 92.
    A. Valdés, R. Almanza, A. Soria, Determining the deflection magnitude of a steel receiver from a DSG parabolic trough concentrator under stratified flow conditions. Energy Procedia 57, 341–350 (2014).  https://doi.org/10.1016/j.egypro.2014.10.039CrossRefGoogle Scholar
  93. 93.
    D. Canavarro, J. Chaves, M. Collares-Pereira, New optical designs for large parabolic troughs. Energy Procedia 49, 1279–1287 (2013).  https://doi.org/10.1016/j.egypro.2014.03.137CrossRefGoogle Scholar
  94. 94.
    S.A. Zavattoni, A. Gaetano, M.C. Barbato, G. Ambrosetti, P. Good, F. Malnati et al., CFD analysis of a receiving cavity suitable for a novel CSP parabolic trough receiver. Energy Procedia 49, 579–588 (2013).  https://doi.org/10.1016/j.egypro.2014.03.062CrossRefGoogle Scholar
  95. 95.
    L. Habib, M.I. Hassan, Y. Shatilla, A realistic numerical model of lengthy solar thermal receivers used in parabolic trough CSP plants. Energy Procedia 75, 473–478 (2015).  https://doi.org/10.1016/j.egypro.2015.07.427CrossRefGoogle Scholar
  96. 96.
    F. Chen, M. Li, P. Zhang, X. Luo, Thermal performance of a novel linear cavity absorber for parabolic trough solar concentrator. Energy Convers. Manag. 90, 292–299 (2015).  https://doi.org/10.1016/j.enconman.2014.11.034CrossRefGoogle Scholar
  97. 97.
    J.L. Navarro-Hermoso, G. Espinosa-Rueda, C. Heras, I. Salinas, N. Martinez, M. Gallas, Parabolic trough solar receivers characterization using specific test bench for transmittance, absorptance and heat loss simultaneous measurement. Sol. Energy 136, 268–277 (2016).  https://doi.org/10.1016/j.solener.2016.07.012CrossRefGoogle Scholar
  98. 98.
    J. Guo, X. Huai, Z. Liu, Performance investigation of parabolic trough solar receiver. Appl. Therm. Eng. 95, 357–364 (2016).  https://doi.org/10.1016/j.applthermaleng.2015.11.035CrossRefGoogle Scholar
  99. 99.
    E. Bellos, C. Tzivanidis, D. Tsimpoukis, Thermal enhancement of parabolic trough collector with internally 2 finned absorbers. Solar energy, 32 (2017).  https://doi.org/10.1016/j.solener.2017.08.067
  100. 100.
    F. Wang, Z. Tang, X. Gong, J. Tan, H. Han, B. Li, Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube. Energy 114, 275–292 (2016)CrossRefGoogle Scholar
  101. 101.
    A. Mwesigye, T. Bello-Ochende, J.P. Meyer, Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts. Int. J. Therm. Sci. 99, 238–257 (2016)Google Scholar
  102. 102.
    K.S. Reddy, G.V. Satyanarayana, Numerical study of porous finned receiver for solar parabolic trough concentrator. Eng. Appl. Comput. Fluid. Mech. 2(2), 172–184 (2008)Google Scholar
  103. 103.
    K. Jacek, N. Magdalena, Investigation of thermo-hydraulic performance of concentrated solar air-heater with internal multiple-fin array. Appl. Therm. Eng. 58(1–2), 411–419 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Milind S. Patil
    • 1
    Email author
  • Sanjay Pratapsingh Shekhawat
    • 1
  1. 1.Research Centre, KBC North Maharashtra University, SSBT’s College of Engineering and TechnologyJalgaonIndia

Personalised recommendations